Bus Systems

Common connection between the CPU, the memory, and the peripheral devices.

One device issues a request for information over the bus, and another device sends the information in response.
Bus Lines

Control signals
- Several lines.
- Processor uses them to control communication.
- Other devices may make requests to the processor.

Data/Address
- May be 8, 16 or some other width.
- May use shared data and address lines (cheaper) or separate (faster).

Types of Busses

- Processor-Memory (Local Bus): Short, transfer at memory speed. Connect CPU, memory, and maybe a few fast devices.
- I/O Busses: Long, slow. SCSI, IDE
- Backplane Busses: Keep everyone happy. PCI

Distinctions are not always clear.
Bus Arrangements

Synchronous Busses

- All connections to the bus share the same clock and clock periods.
- Each device knows what it may do during each period.
- Bus length is limited. Clock signals don’t travel well over long wires.
- Faster than asynchronous.

Synchronous/Asynchronous Busses

- Synchronous: Bus has a clock and devices are synchronized.
- Asynchronous: Bus had no clock and devices must handshake.

Asynchronous Busses

- Each communicating device has own clock.
- Devices use special signals to keep track of each other and know what to do next.
- Works over longer distances.
- Devices may be added easily.
- Slower than synchronous.
Handshaking Protocol

1. ReadReq
2. Data
3. Ack
4. DataRdy
5. ReadReq
6. Data
7. Ack

Performance Parameters

- Data bus width. *More wires mean more bits at a time.*
- Separate data/address lines.
- Block transfers.

State Machines for Handshaking

The Bus Master

The device which initiates transfers on the bus.

- Simplest: Only the CPU
- Faster: Multiple bus masters.

If the CPU is the only bus master, it must be involved in every transfer. It is better to relieve the CPU of this work.
Bus Arbitration

Can’t all talk at once. Who gets to be bus master?

- Daisy Chain. *Requests go through each device in increasing priority.*

- Centralized. *All requests go through a centralized arbiter.*

- Distributed by self-selection. *Each device knows all pending requests and yields to the highest priority.*

- Distributed by collision-detection. *Try it; if it collided, try it again.*

Centralized

![Centralized Diagram]

Daisy Chain

![Daisy Chain Diagram]

Commanding Devices

- The CPU writes data interpreted as command codes.

- The CPU reads status information.

- Memory-mapped: Devices are given addresses in real address space.

- Dedicated I/O instructions.
User Programs Need Not Apply

Only the O/S is allowed to communicate with devices.

- Memory-mapped device addresses are not part of user space.
- I/O instructions are not permitted in privileged mode.

Polling v. Interrupts

- Polling: CPU repeatedly reads the status.
- Interrupts: The device informs the CPU when something happens.

Polling is simpler, interrupts are more efficient.

O/S Enforces Security

- Reading keyboards.
- File permissions.
- File system integrity.
- Network packets for other processes.

User programs could bypass the O/S security systems and data structures if they could make direct access to devices.

Data Transfer

- Processor can direct each transfer.
- A separate device can direct block transfers. *Direct Memory Access (DMA).*
Direct Memory Access

- CPU sends instructions to DMA.
- DMA controller moves a block of data from the “other device” to the memory.
- CPU does something else in the mean time.
- DMA controller interrupts CPU when done.