MUMPS - a parallel direct solver for sparse systems

Usage:

-mat_type aijmumps -ksp_type preonly -pc_type lu

aij matrix type

-mat_type sbaijmumps -ksp_type preonly -pc_type cholesky

symmetric sbaij matrix type

Options:

-mat_mumps_sym <0,1,2>

0 the matrix is unsymmetric, 1 symmetric positive definite, 2 symmetric

-mat_mumps_icntl_4 <0,1,2,3,4>

print level

-mat_mumps_icntl_6 <0,...,7>

matrix prescaling options (see MUMPS User's Guide)

-mat_mumps_icntl_7 <0,...,7>

matrix orderings (see MUMPS User's Guide)

-mat_mumps_icntl_9 <1,2>

A or A^T x=b to be solved: 1 denotes A, 2 denotes A^T

-mat_mumps_icntl_10 <n>

maximum number of iterative refinements

-mat_mumps_icntl_11 <n>

error analysis, a positive value returns statistics during -ksp_view

-mat_mumps_icntl_12 <n>

efficiency control (see MUMPS User's Guide)

-mat_mumps_icntl_13 <n>

efficiency control (see MUMPS User's Guide)

-mat_mumps_icntl_14 <n>

efficiency control (see MUMPS User's Guide)

-mat_mumps_icntl_15 <n>

efficiency control (see MUMPS User's Guide)

-mat_mumps_cntl_1 <delta>

relative pivoting threshold

-mat_mumps_cntl_2 <tol>

stopping criterion for refinement

-mat_mumps_cntl_3 <adelta>

absolute pivoting threshold

 

Back to Main Page