SPOOLES - a parallel direct solver for sparse systems

Usage:

-mat_type seqaijspooles -ksp_type preonly -pc_type lu

sequential seqaij matrix type

-mat_type mpiaijspooles -ksp_type preonly -pc_type lu

parallel sequential mpiaij matrix type

-mat_type seqsbaijspooles -ksp_type preonly -pc_type cholesky

sequential symmetric seqsbaij matrix type

-mat_type mpisbaijspooles -ksp_type preonly -pc_type cholesky

parallel symmetric mpisbaij matrix type

Options:

-mat_spooles_tau <tau>

upper bound on the magnitude of the largest element in L or U

-mat_spooles_seed <seed>

random number seed used for ordering

-mat_spooles_msglvl <msglvl>

message output level

-mat_spooles_ordering <BestOfNDandMS,MMD,MS,ND>

ordering used

-mat_spooles_maxdomainsize <n>

maximum subgraph size used by Spooles orderings

-mat_spooles_maxzeros <n>

maximum number of zeros inside a supernode

-mat_spooles_maxsize <n>

maximum size of a supernode

-mat_spooles_FrontMtxInfo <true,fase>

print Spooles information about the computed factorization

-mat_spooles_symmetryflag <0,1,2>

0: SPOOLES_SYMMETRIC, 1: SPOOLES_HERMITIAN, 2: SPOOLES_NONSYMMETRIC

-mat_spooles_patchAndGoFlag <0,1,2>

0: no patch, 1: use PatchAndGo strategy 1, 2: use PatchAndGo strategy 2

-mat_spooles_toosmall <dt>

drop tolerance for PatchAndGo strategy 1

-mat_spooles_storeids <bool integer>

if nonzero, stores row and col numbers where patches were applied in an IV object

-mat_spooles_fudge <delta>

fudge factor for rescaling diagonals with PatchAndGo strategy 2

-mat_spooles_storevalues <bool integer>

if nonzero and PatchAndGo strategy 2 is used, store change in diagonal value in a DV object

 

 

 

Back to Main Page