## Chapter 2: **Project Management**



PowerPoint Presentation for Dennis, Wixom, & Tegarden Systems Analysis and Design with UML, 5th Edition

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

# Learning Objectives

- Link information systems to business needs
- Learn how to create a system request
- Understand system feasibility
- Learn how to perform a feasibility analysis
- Understand how to select a project
- Become familiar with work breakdown structure, Gantt charts & network diagrams
- Become familiar with use-case driven effort estimation
- Learn how to create an interactive project workplan
- Learn how to manage the scope, refine estimates and manage the risk of a project
- Become familiar with how to staff a project
- Learn how the environment and infrastructure workflows interact with the project management workflow



### Introduction

- Project Management is the process of planning and controlling system development within a specified time at a minimum cost with the right functionality
- A project is a set of activities with a specified beginning and end point meant to create a system that brings value to the business
- Project Managers monitor and control all tasks and roles that need to be coordinated
- Inception phase: generate a system request based on a business need or opportunity
- Perform a feasibility analysis; revise the system request
  - Approve or decline the project



### **Project Identification**

- Projects are driven by business needs
  - Identified by business people
  - Identified by IT people
  - (better yet) identified jointly by business and IT
- The "project sponsor" is the business unit proposing the system.
- The project sponsor believes in the system and wants to see it succeed
  - Normally this is a business person
  - Should have the authority to move it forward



#### **Business Needs**

- Support a new marketing campaign
- To replace inefficient existing processes.
- To deal with new problems or failures
- To utilize emerging technology.



### **Business Value**

#### Tangible Value

• Can be quantified and measured directly

• Example: 2 percent reduction in operating costs

#### Intangible Value

- We know it will add value & save time, but we may not be able to quantify or measure its benefits
- Example: improved customer service



# The System Request

- A document that describes the reasons for and the value added from building a new system
- Contains 5 elements:
  - Project sponsor: the primary point of contact for the project
  - Business need: the reason prompting the project
  - Business requirements: what the system will do
  - Business value: how will the organization benefit from the project
  - Special issues: Anything else that should be considered



# Feasibility Analysis

- Is this project feasible?
  - What are the risks?
  - Can these risks be overcome?
- Major components:
  - Technical feasibility (Can we build it?)
  - Economic feasibility (Should we build it?)
  - Organizational feasibility (Will they use it?)



# **Technical Feasibility**

- Identify risks in the following areas:
  - The functional area: Are analysts familiar with this portion of the business?
  - The technology: Less familiarity generates more risk
  - Project size: Large projects have more risk
  - Compatibility: Difficult integration increases the risk



Economic Feasibility (Cost-Benefit Analysis)

- Identify the costs and the benefits
- Assign values to the costs and benefits
- Determine the cash flow
- Determine the value using one or more methods:
  - Net present value (NPV)
  - Return on investment (ROI)
  - Break-even point



#### **Cost-Benefit Analysis**

| Benefits <sup>a</sup>                  |           |
|----------------------------------------|-----------|
| Increased sales                        | 500,000   |
| Improved customer service <sup>b</sup> | 70,000    |
| Reduced inventory costs                | 68,000    |
| Total benefits                         | 638,000   |
| Development costs                      |           |
| 2 servers @ \$125,000                  | 250,000   |
| Printer                                | 100,000   |
| Software licenses                      | 34,825    |
| Server software                        | 10,945    |
| Development labor                      | 1,236,525 |
| Total development costs                | 1,632,295 |
| Operational costs                      |           |
| Hardware                               | 54,000    |
| Software                               | 20,000    |
| Operational labor                      | 111,788   |
| Total operational costs                | 185,788   |
| Total costs                            | 1,818,083 |

<sup>a</sup> An important yet intangible benefit will be the ability to offer services that our competitors currently offer.

<sup>b</sup> Customer service numbers have been based on reduced costs for customer complaint phone calls.



### **Cost-Benefit Analysis**

- The previous table gives values for only one year.
- Projects should be evaluated over a longer period.
- Some reasonable period of years is chosen.
- Costs and benefits are expressed in "present value" to adjust for various time frames.



# Example Cost-Benefit Analysis

|                                       | 2008                                | 2009                                                                   | 2010      | 2011      | 2012      | Total     |  |  |  |  |  |
|---------------------------------------|-------------------------------------|------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| Increased sales                       | 500,000                             | 530,000                                                                | 561,800   | 595,508   | 631,238   |           |  |  |  |  |  |
| Reduction in customer complaint calls | 70,000                              | 70,000                                                                 | 70,000    | 70,000    | 70,000    |           |  |  |  |  |  |
| Reduced inventory costs               | 68,000                              | 68,000                                                                 | 68,000    | 68,000    | 68,000    |           |  |  |  |  |  |
| TOTAL BENEFITS:                       | 638,000                             | 668,000                                                                | 699,800   | 733,508   | 769,238   |           |  |  |  |  |  |
| PV OF BENEFITS:                       | 619,417                             | 629,654                                                                | 640,416   | 651,712   | 663,552   | 3,204,752 |  |  |  |  |  |
| PV OF ALL BENEFITS:                   | 619,417                             | 1,249,072                                                              | 1,889,488 | 2,541,200 | 3,204,752 |           |  |  |  |  |  |
| 2 Servers @ \$125,000                 | 250,000                             | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| Printer                               | 100,000                             | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| Software licenses                     | 34,825                              | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| Server software                       | 10,945                              | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| Development labor                     | 1,236,525                           | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| TOTAL DEVELOPMENT COSTS:              | 1,632,295                           | 0                                                                      | 0         | 0         | 0         |           |  |  |  |  |  |
| Hardware                              | 54,000                              | 81,261                                                                 | 81,261    | 81,261    | 81,261    |           |  |  |  |  |  |
| Software                              | 20,000                              | 20,000                                                                 | 20,000    | 20,000    | 20,000    |           |  |  |  |  |  |
| Operational labor                     | 111,788                             | 116,260                                                                | 120,910   | 125,746   | 130,776   |           |  |  |  |  |  |
| TOTAL OPERATIONAL COSTS:              | 185,788                             | 217,521                                                                | 222,171   | 227,007   | 232,037   |           |  |  |  |  |  |
| TOTAL COSTS:                          | 1,818,083                           | 217,521                                                                | 222,171   | 227,007   | 232,037   |           |  |  |  |  |  |
| PV OF COSTS:                          | 1,765,129                           | 205,034                                                                | 203,318   | 201,693   | 200,157   | 2,575,331 |  |  |  |  |  |
| PV OF ALL COSTS:                      | 1,765,129                           | 1,970,163                                                              | 2,173,481 | 2,375,174 | 2,575,331 |           |  |  |  |  |  |
| TOTAL PROJECT BENEFITS - COSTS:       | (1,180,083)                         | 450,479                                                                | 477,629   | 506,501   | 537,201   |           |  |  |  |  |  |
| YEARLY NPV:                           | (1,145,712)                         | 424,620                                                                | 437,098   | 450,019   | 463,395   | 629,421   |  |  |  |  |  |
| CUMULATIVE NPV:                       | (1,145,712)                         | (721,091)                                                              | (283,993) | 166,026   | 629,421   |           |  |  |  |  |  |
| RETURN ON INVESTMENT:                 | 24.44%                              | (629,421/2,5                                                           |           |           |           |           |  |  |  |  |  |
| BREAK-EVEN POINT:                     | <u>3.63 years</u>                   | ears [break-even occurs in year 4; (450,019 - 166,026)/450,019 = 0.63] |           |           |           |           |  |  |  |  |  |
| INTANGIBLE BENEFITS:                  | This service is c<br>Improved custo | currently provided by competitors<br>tomer satisfaction                |           |           |           |           |  |  |  |  |  |



# Formulas for Determining Value

| Calculation                | Definition                                                                                                                  | Formula                                                                                       |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| Present Value (PV)         | The amount of an investment today<br>compared to that same amount in the future,<br>taking into account inflation and time. | $\frac{\text{Amount}}{(1 + \text{interest rate})^n}$ $n = \text{number of years in future}$   |  |  |  |  |
| Net Present Value (NPV)    | The present value of benefit less the present value of costs.                                                               | PV Benefits – PV Costs                                                                        |  |  |  |  |
| Return on Investment (ROI) | The amount of revenues or cost savings results from a given investment.                                                     | Total benefits – Total costs<br>Total costs                                                   |  |  |  |  |
| Break-Even Point           | The point in time at which the costs of the project equal the value it has delivered.                                       | Yearly NPV* - Cumulative NPV<br>Yearly NPV*                                                   |  |  |  |  |
|                            |                                                                                                                             | *Use the Yearly NPV amount from the first year in which the project has a positive cash flow. |  |  |  |  |
|                            |                                                                                                                             | Add the above amount to the year in which the project<br>has a positive cash flow.            |  |  |  |  |



### Example Break-Even Point





# Organizational Feasibility

- Will the users accept the system?
- Is the project strategically aligned with the business?
- Conduct a stakeholder analysis
  - Project champion(s)
  - Organizational management
  - System users
  - Others



# **Project Selection**

- Projects are approved, declined or delayed based on value added vs. risks
- Project portfolio management
  - Goals:
    - Maximize cost/benefit ratio
    - Maintain an optimal mix of projects based on:
      - Risk
      - Size, cost & length of time to complete
      - Purpose, scope & business value
  - Limited resources require trade-offs

#### Selected projects enter the project management process



# Project Management Tools

- Aids in creating workplans
- Identify all tasks, their sequence and estimate the time to complete each one
- Work breakdown structures (WBS): a hierarchy of tasks to identify:
  - Duration of each task
  - Current status of each task
  - Task dependencies (shows which tasks must be completed before others can begin)
- Gantt charts: horizontal bar chart that shows the WBS graphically
  - Network diagrams: PERT and CPM

### GANTT

|    | Task                                     |          |                |                |       |      | Ja    |     | January |      | January |     |     | January    |      |     | January |                 |      | January |      |      | F    | ebr | ruar | y |  | M | arch | 1 |  | A | \pril |  | M |
|----|------------------------------------------|----------|----------------|----------------|-------|------|-------|-----|---------|------|---------|-----|-----|------------|------|-----|---------|-----------------|------|---------|------|------|------|-----|------|---|--|---|------|---|--|---|-------|--|---|
| ID | Name                                     | Duration | Start          | Finish         | Prede | 12/2 | 9 1/5 | 1/1 | 2 1/19  | 1/26 | 2/2     | 2/9 | 2/1 | 6 2/23     | 3/2  | 3/9 | 3/16    | 3/23            | 3/30 | 4/6     | 4/13 | 4/20 | 4/27 |     |      |   |  |   |      |   |  |   |       |  |   |
| 1  | ldentify<br>vendors                      | 2 wks    | Wed<br>1/1/15  | Tue<br>1/14/15 |       |      |       | -1  | Alan    | 1    |         |     |     |            |      |     |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 2  | Review<br>training<br>materials          | 6 wks    | Wed<br>1/1/15  | Tue<br>2/11/15 |       |      |       |     | _       | _    | _       | ₽   | Bar | bara       |      |     |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 3  | Compare<br>vendors                       | 2 wks    | Wed<br>2/12/15 | Tue<br>2/25/15 | 2     |      |       |     |         |      |         | ļ   | ,   | <u>ן</u>   | Barb | ara |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 4  | Negotiate<br>with<br>vendors             | 3 wks    | Wed<br>2/26/15 | Tue<br>3/8/15  | 3     |      |       |     |         |      |         |     |     | Ļ          |      |     |         | ٦ <sup>Ba</sup> | arba | ra      |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 5  | Develop<br>communications<br>information | 4 wks    | Wed<br>1/15/15 | Tue<br>2/11/15 | 1     |      |       | ļ   | ,       |      | -       |     | Ala | n          |      |     |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 6  | Disseminate<br>information               | 2 wks    | Wed<br>2/12/15 | Tue<br>2/25/15 | 5     |      |       |     |         |      |         | Ļ   | ,   | <b>_</b> ] | Alan | I.  |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 7  | Create and<br>administer<br>survey       | 4 wks    | Wed<br>2/26/15 | Tue<br>3/25/15 | 6     |      |       |     |         |      |         |     |     | Ļ          | -    | _   |         | ħ               | Alar | n       |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 8  | Analyze results<br>and choose            | 2 wks    | Wed<br>3/26/15 | Tue<br>4/8/15  | 4, 7  |      |       |     |         |      |         |     |     |            |      |     |         | ††              |      |         | ^    | lan  |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 9  | Build new<br>classroom                   | 11 wks   | Wed<br>1/15/15 | Tue<br>4/1/15  | 1     |      |       | ļ   | ,       |      | •       |     |     |            |      |     |         |                 |      | avio    | ł    |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 10 | Develop<br>course<br>options             | 3 wks    | Wed<br>4/9/15  | Tue<br>4/29/15 | 8, 9  |      |       |     |         |      |         |     |     |            |      |     |         |                 |      | Ļ       | ţ    | _    | D    |     |      |   |  |   |      |   |  |   |       |  |   |
| 11 | Budget<br>Meeting                        | 1 day    | Wed<br>1/15/15 | Wed<br>1/15/15 |       |      |       | +   | 1/15    | ;    |         |     |     |            |      |     |         |                 |      |         |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |
| 12 | Software<br>Installation                 | 1 day    | Tue<br>4/1/15  | Tue<br>4/1/15  |       |      |       |     |         |      |         |     |     |            |      |     |         |                 | •    | 4/1     |      |      |      |     |      |   |  |   |      |   |  |   |       |  |   |



### Network





# **Project Effort Estimation**

- Estimation involves trade-offs between functionality, time and cost
- It is the process of assigning projected values for time and effort
- Most accurate estimates come from experience
- Use-case point method; based on:
  - Technical complexity factors (13)
  - Environmental factors (8)



# **Project Effort Estimation**

- Actors are persons or external systems which interact with ours.
- Use cases are major business processes to be performed.
- Points are assigned for each based on complexity and summed.
- Point total adjusted (up) by complexity factors, and (down) by helpful environmental factors.
- Converted to person-hours by a factor depending on environmental factor settings.



## **Use-case** Estimation Example

#### Actors & Use-cases:

| Unadjusted Actor Weighting Table: |                                                                                     |                     |                        |        |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------|---------------------|------------------------|--------|--|--|--|--|--|--|
| Actor Type                        | Description                                                                         | Weighting Factor    | Number                 | Result |  |  |  |  |  |  |
| Simple                            | External system with well-defined API                                               | 1                   | 0                      | 0      |  |  |  |  |  |  |
| Average                           | External system using a protocol-based interface, e.g., HTTP, TCT/IP, or a database | 2                   | 0                      | 0      |  |  |  |  |  |  |
| Complex                           | Human                                                                               | 3                   | 4                      | 12     |  |  |  |  |  |  |
|                                   |                                                                                     | Unadjusted Act      | tor Weight Total (UAW) | 12     |  |  |  |  |  |  |
| Unadjusted Use-C                  | ase Weighting Table:                                                                |                     |                        |        |  |  |  |  |  |  |
| Use Case Type                     | Description                                                                         | Weighting Factor    | Number                 | Result |  |  |  |  |  |  |
| Simple                            | 1–3 transactions                                                                    | 5                   | 3                      | 15     |  |  |  |  |  |  |
| Average                           | 4–7 transactions                                                                    | 10                  | 4                      | 40     |  |  |  |  |  |  |
| Complex                           | >7 transactions                                                                     | 15                  | 1                      | 15     |  |  |  |  |  |  |
|                                   |                                                                                     | Unadjusted Use Case | Weight Total (UUCW)    | 70     |  |  |  |  |  |  |
|                                   |                                                                                     |                     |                        |        |  |  |  |  |  |  |

Unadjusted Use-Case Points (UUCP) = UAW + UUCW 82 = 12 + 70



## **Use-case Estimation Example**

#### Technical complexity factors:

#### **Technical Complexity Factors:**

| Factor Number                            | Description                                           | Weight                     | Assigned Value (0 – 5)       | Weighted Value | Notes |
|------------------------------------------|-------------------------------------------------------|----------------------------|------------------------------|----------------|-------|
| T1                                       | Distributed system                                    | 2.0                        | 0                            | 0              |       |
| T2                                       | Response time or throughput<br>performance objectives | 1.0                        | 5                            | 5              |       |
| T3                                       | End-user online efficiency                            | 1.0                        | 3                            | 3              |       |
| T4                                       | Complex internal processing                           | 1.0                        | 1                            | 1              |       |
| T5                                       | Reusability of code                                   | 1.0                        | 1                            | 1              |       |
| T6                                       | Ease of installation                                  | 0.5                        | 2                            | 1              |       |
| T7                                       | Ease of use                                           | 0.5                        | 4                            | 2              |       |
| T8                                       | Portability                                           | 2.0                        | 0                            | 0              |       |
| T9                                       | Ease of change                                        | 1.0                        | 2                            | 2              |       |
| T10                                      | Concurrency                                           | 1.0                        | 0                            | 0              |       |
| T11                                      | Special security objectives included                  | 1.0                        | 0                            | 0              |       |
| T12                                      | Direct access for third parties                       | 1.0                        | 0                            | 0              |       |
| T13                                      | Special user training required                        | 1.0                        | 0                            | 0              |       |
|                                          |                                                       | Tech                       | nical Factor Value (TFactor) | 15             |       |
| 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | where the second second second second                 | 1. 1033-043-01 1-15-042-01 |                              |                |       |

Technical Complexity Factor (TCF) = 0.6 + (0.01 \* TFactor) = 0.75 = 0.6 + (0.01 \* 15)



## **Use-case Estimation Example**

#### Environmental factors & final estimate:

#### **Environmental Factors:**

| Factor Number                                                                                                                                                                                                                   | Description                                               | Weight  | Assigned Value (0 – 5)        | Weighted Value | Notes |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|-------------------------------|----------------|-------|--|--|--|--|--|
| E1                                                                                                                                                                                                                              | Familiarity with system<br>development process being used | 1.5     | 4                             | 6              |       |  |  |  |  |  |
| E2                                                                                                                                                                                                                              | Application experience                                    | 0.5     | 4                             | 2              |       |  |  |  |  |  |
| E3                                                                                                                                                                                                                              | Object-oriented experience                                | 1.0     | 4                             | 4              |       |  |  |  |  |  |
| E4                                                                                                                                                                                                                              | Lead analyst capability                                   | 0.5     | 5                             | 2.5            |       |  |  |  |  |  |
| E5                                                                                                                                                                                                                              | Motivation                                                | 1.0     | 5                             | 5              |       |  |  |  |  |  |
| E6                                                                                                                                                                                                                              | Requirements stability                                    | 2.0     | 5                             | 10             |       |  |  |  |  |  |
| E7                                                                                                                                                                                                                              | Part-time staff                                           | -1.0    | 0                             | 0              |       |  |  |  |  |  |
| E8                                                                                                                                                                                                                              | Difficulty of programming language                        | -1.0    | 4                             | -4.0           |       |  |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                           | Environ | mental Factor Value (EFactor) | 25.5           |       |  |  |  |  |  |
| Environmental Factor (EF) = $1.4 + (-0.03 * EFactor)$ $0.635 = 1.4 + (-0.03 * 25.5)$ Adjusted Use Case Points (UCP) = UUCP * TCF * ECF $33.3375 = 70 * 0.75 * 0.635$ Effort in person-hours = UCP * PHM $666.75 = 20 * 33.3375$ |                                                           |         |                               |                |       |  |  |  |  |  |



# Creating & Managing the Workplan

- Workplan: a dynamic and sequential list of all tasks needed to complete a project
- Work plan should be iterative and incremental
- The work plan needs to evolve as the project design does
- Not enough is known at the start to plan in full detail



# Creating & Managing the Workplan

- Approaches:
  - Modify existing or completed projects
  - Derive the tasks from the methodology being used
- Unified Process:
  - Iterative & incremental
  - Workplan is also iterative & incremental
    - Tasks and time intervals follow the phases
    - Different tasks executed for each workflow



# Evolutionary Work Breakdown Structures

- Organized in a standard manner across all projects
- Created in an incremental & iterative manner
- Generality supports learning from past mistakes and successes

#### • Unified Process:

- Workflows are the major divisions
- Workflows are decomposed along the phases
- Phases are decomposed along the required tasks
- Tasks are added as each iteration is completed



# Scope Management

- Scope "creep"
  - Occurs after the project is underway
  - Results from adding new requirements to the project
  - *Client, developer, or manager gets hooked on some new feature.*
  - Can have a deleterious effect on the schedule
- Techniques to manage the project scope:
  - Identify all requirements at the outset
  - Allow only those changes deemed absolutely necessary
  - Carefully examine the impact of suggested changes
  - Delay some changes for "future enhancements"
  - Time boxing: fix a deadline, deliver what's done



# **Refining Estimates**

- Early effort estimates will probably be incorrect
- Update as you go: hurricane model
- When something comes in early, move up intermediate deadlines, but not delivery
- When something is late, don't expect to make up the time



# Staffing the Project

#### • Goals:

- Determine how many people are required
- Match skill sets to required activities
- Motivate the team to meet the objectives
- Minimize conflicts
- Deliverable—The staffing plan, which includes:
  - Number & kind of people assigned
  - Overall reporting structure
  - The project charter (describes the project's objectives and rules)



# Creating a "Jelled" Team

- A team of people so strongly knit that the whole is greater than the sum of its parts
- Characteristics of a jelled team:
  - Very low turnover rate
  - Strong sense of identity
  - A feeling of eliteness
  - Team vs. individual ownership of the project
  - Team members enjoy their work
  - Love the challenge, proud of meeting it



### Jelled Team

- Members willing to admit what they don't know and ask for help
- Do not fear conflict
- Individuals accept responsibility
- More interested in team performance than own



# The Staffing Plan

Calculate the number of people needed:

```
person-months
```

```
number of people =
```

```
time to complete (in months)
```

- Lines of communication increase exponentially as people are added to a project
- Create a reporting structure for projects with large numbers of people assigned
- Form sub-teams as necessary
- Assign the Project Manager, Functional lead & Technical lead
  - Pay attention to technical and interpersonal skills



# Motivating People

- Motivation is the greatest influence on performance
- Monetary rewards usually do not motivate
- Suggested motivating techniques:
  - 20% time rule: work on what you believe in
  - Peer-to-peer recognition awards
  - Team ownership (refer to the team as "we")
  - Allow members to focus on what interests them
  - Utilize equitable compensation
  - Encourage group ownership
  - Provide for autonomy, but trust the team to deliver



# Handling Conflict

- Preventing or mitigating conflict:
  - Cohesiveness has the greatest effect
  - Clearly defining roles and holding team members accountable
  - Establish work & communications rules in the project charter

#### Additional techniques:

- Clearly define plans for the project
- Make sure the team understands the importance of the project
- Develop detailed operating procedures
- Develop a project charter
- Develop a schedule of commitments in advance
- Forecast other priorities and their impact on the project



# Environment & Infrastructure Management

- Environment—Choose the right set of tools
  - Use appropriate CASE tools to:
    - Increase productivity and centralize information (repository)
    - Utilize diagrams—more easily understood
  - Establish standards to reduce complexity
- Infrastructure—Document the project appropriately
  - Store deliverables & communications in a project binder
  - Use Unified Process standard documents
  - Don't put off documentation to the last minute



# Summary

- Project Initiation
- Feasibility Analysis
- Project Selection
- Traditional Project Management Tools
- Estimating Project Effort
- Create and manage the workplan
- Staff the project
- Manage the environment and infrastructure work flows of the project

