Chapter 9:
Data Management Layer
Design

Objectives

Become familiar with several object-persistence formats.

Be able to map problem domain objects to different object-persistence
formats.

Be able to apply the steps of normalization to a relational database.
Be able to optimize a relational database for object storage and access.
Become familiar with indexes for relational databases.

Be able to estimate the size of a relational database.

Understand the effect of nonfunctional requirements on the data
management layer

Be able to design the data access and manipulation classes.

Introduction

® Applications are of little use without data
® Data must be stored and accessed efficiently
® The data management layer includes:
® Data access and manipulation logic
® Storage design
® Four-step design approach:
® Selecting the format of the storage

® Mapping problem-domain objects to object persistence
format

® Optimizing the object persistence format
Designing the data access & manipulation classes

Object Persistence Formats

® Files (sequential and random access)
® Object-oriented databases
® Object-relational databases

® Relational databases
® “NoSQL” data stores

Electronic Files

® Sequential access files

® Operations (read, write and search) are conducted one record after
another (in sequence)

® Efficient for report writing

® [nefficient for searching (an average of 50% of records have to be
accessed for each search)

® Unordered files add records to the end of the file

® Ordered files are sorted, but additions & deletions require additional
maintenance

® Random access files
® FEfficient for operations (read, write and search)

® TInefficient for report writing

Application File Types

® Master Files

® Store core information (e.g., order and customer data)
® Usually held for long periods

® Changes require new programs
® Took-up files (e.g., zip codes with city and state names)
® Transaction files

® Information used to update a master file

® (Can be deleted once master file is updated

® Audit file—records data before & after changes

® History file—archives of past transactions

Relational Databases

® Most popular way to store data for applications

® Consists of a collection of tables
® Primary key uniquely identifies each row
® Foreign keys establish relationships between tables

® Referential integrity ensures records in different tables are matched
properly
® Example: you cannot enter an order for a customer that does not exist

® Structured Query Language (SQL) is used to access the data
® Operates on complete tables vs. individual records

® Allows joining tables together to obtain matched data

Object-Relational Databases

® A standard relational database with ability to store objects
added

® Must create a mapping from UML class diagrams to database
schema is required.

® Accomplished using user-defined data types
® SQL extended to handle complex data types

® Support for inheritance varies

Object-Oriented Databases

® Two approaches:
® Add persistence extensions to OO programming language
® (Create a separate OO database

® Utilize extents—a collection of instances of a class
® A table associated with a class.
® Fach row an instance of the class, and having an Object ID
® Object IDs relate objects together
® Another primary key may still be desirable

® Inheritance is supported but is language dependent

® Represent a small market share due to its steep learning
~curve

NoSQL Data Stores

® Newest type; used primarily for complex data types
® Does not support SQL
® No standards exist
® Support very fast queries

® Data may not be consistent since there are no locking
mechanisms

® Types
® Key-value data stores
® Document data stores

® (Columnar data stores

® Immaturity of technology prevents traditional business
application support

Selecting Persistence Formats

Major Usually part of an object- Leader in the database Based on established, Able to handle complex
Strengths | oriented programming market proven technology, e.g., data
language Can handle diverse data SQL Direct support for object
Files can be designed for needs Able to handle complex orientation
fast performance data
Good for short-term data
storage
Major Redundant data Cannot handle complex Limited support for object Technology is still maturing
Weaknesses | Data must be updated using | data orientation Skills are hard to find
programs, i.e., no manipula- | No support for object Impedance mismatch
tion or query language orientation between tables and objects
No access control Impedance mismatch
between tables and objects
Data Types | Simple and Complex Simple Simple and Complex Simple and Complex
Supported
Types of Transaction processing Transaction processing and | Transaction processing and | Transaction processing and
Application decision making decision making decision making
Systems
Supported
Existing Organization Organization Organization Organization
Storage dependent dependent dependent dependent
Formats
Future Poor future Good future Good future Good future

MNeeds

prospects

prospects

prospects

Mapping Problem-Domain Objects to
Object-Persistence Formats

® Map objects to an OODBMS format

® Fach concrete class has a corresponding object persistence class

® Add a data access and manipulation class to control the interaction

® Map objects to an ORDBMS format

® Procedure depends on the level of support for object orientation by
the ORDBMS

® Map objects to an RDBMS format

Mapping to an OODBMS

PD Layer
Patient Appointment
T 7T T T
| | | I
I I I I
T S— i I ,
DM Layer | | i
| |
Patient-DAM i Appointment-DAM
|
|

o e e e e

|
T Ll between

Mapping to an OODBMS

May need to factor out multiple inheritance if not
supported by OODBMS

Techniques similar to removing it from the design to
write code when required:

Either change extra base class objects to attributes, or
absorb their attributes.

PowerPoint Presentation for Dennis, Wixom, & Tegarden Systems Analysis and Design with UML, 5th Edition

ey Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Mapping to an ORDBMS

Rule 1: Map all concrete Problem Domain classes to the ORDBMS tables. Also, if an abstract problem domain class has multiple
direct subclasses, map the abstract class to an ORDBMS table.

Rule 2: Map single-valued attributes to columns of the ORDBMS tables.
Rule 3: Map methods and derived attributes to stored procedures or to program modules.

Rule 4: Map single-valued aggregation and association relationships to a column that can store an Object ID. Do this for both sides
of the relationship.

Rule 5: Map multivalued attributes to a column that can contain a set of values.

Rule 6: Map repeating groups of attributes to a new table and create a one-to-many association from the original table to the new
one.

Rule 7: Map multivalued aggregation and association relationships to a column that can store a set of Object 1Ds. Do this for both
sides of the relationship.

Rule 8: For aggregation and association relationships of mixed type (one-to-many or many-to-one), on the single-valued side (1..1
or 0..1) of the relationship, add a column that can store a set of Object 1Ds. The values contained in this new column will be the
Object IDs from the instances of the class on the multivalued side. On the multivalued side (1..* or 0..*), add a column that can
store a single Object ID that will contain the value of the instance of the class on the single-valued side.

For generalization/inheritance relationships:

Rule 9a: Add a column(s) to the table(s) that represents the subclass(es) that will contain an Object 1D of the instance stored in the
table that represents the superclass. This is similar in concept to a foreign key in an RDBMS. The multiplicity of this new associa-
tion from the subclass to the “superclass” should be 1..1. Add a column(s) to the table(s) that represents the superclass(es) that will
contain an Object ID of the instance stored in the table that represents the subclass(es). If the superclasses are concrete, that is,
they can be instantiated themselves, then the multiplicity from the superclass to the subclass is 0..1, otherwise, it is 1..1. An
exclusive-or (XOR) constraint must be added between the associations. Do this for each superclass.

or

Rule 9b: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the super-

class from the design.*
*It is also a good idea to document this modification in the design so that in the future, modifications to the design can be maintained easily.

apping to an ORDBMS

ORDEMS Problem Domain Classes
-lastname[1..1] -lastname
firstname[1..1] —firstname
-address[1..1] | __ __ ———— -address
-phone[1..1] -phone
-birthdate[1..1] -hirthdate
-SubClassObjects|1..1] - age
1..1
1..1
— schedules P | time
-amount[1..1] -amount el
-Participant[1..1] -insurance carrier 1 0.+ [=
-Appts[0..*] . i o T smake appointment()} E o
-Symptoms[1..7] - | +calculate fast visitl) S A R
_In?urance camrier[0..*]) - +change status() T
1 | -Primary Insurance Carrier[0..%] — +provides medical history() !
) 0. 0:.*
0.* 1 Ty suffers b
= insurance |
carrier
1:.* 1™
-name[1..1] = = i ————* _name
-Patients[0_.%]
1

-Patient[1..1]
—-time]1..1]
-date[1..1]
-reason[1..1]

Mapping to an RDBMS

Rule 1: Map all concrete-problem domain classes to the RDBMS tables. Also, if an abstract Problem Domain class has multiple
direct subclasses, map the abstract class to a RDBMS table.

Rule 2: Map single-valued attributes to columns of the tables.

Rule 3: Map methods to stored procedures or to program modules.

Rule 4: Map single-valued aggregation and association relationships to a column that can store the key of the related table, i.e.,
add a foreign key to the table. Do this for both sides of the relationship.

Rule 5: Map multivalued attributes and repeating groups to new tables and create a one-to-many association from the original
table to the new ones.

Rule 6: Map multivalued aggregation and association relationships to a new associative table that relates the two original tables
together. Copy the primary key from both original tables to the new associative table, i.e., add foreign keys to the table.

Rule 7: For aggregation and association relationships of mixed type, copy the primary key from the single-valued side (1..1 or 0..1)
of the relationship to a new column in the table on the multivalued side (1..* or 0..*) of the relationship that can store the key of
the related table, i.e., add a foreign key to the table on the multivalued side of the relationship.

For generalization/inheritance relationships:

Rule 8a: Ensure that the primary key of the subclass instance is the same as the primary key of the superclass. The multiplicity of
this new association from the subclass to the “superclass” should be 1..1. If the superclasses are concrete, that is, they can be
instantiated themselves, then the multiplicity from the superclass to the subclass is 0..1, otherwise, it is 1..1. Furthermore, an
exclusive-or (XOR) constraint must be added between the associations. Do this for each superclass.

OR

Rule 8b: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the
superclass from the design.*
* It is also a good idea to document this modification in the design so that in the future, modifications to the design can be maintained easily.

Mapping to an RDBMS

RDBEMS Tables Problem Domain Classes
Participant Table Participant
-lastname[1..1] -lastname
-firstmame|1 -firsthname
-address[1..1] _ _ _ | -address
-phone[1..1] -phone
-birthdate[1..1] -birthdate
-participanttNumber[1_.17] - age
1.1
Appointment
schedules b -time
1.1 -date
o=
-reason
It Patient Table Patient +cancel without notice()
—-amount[1..1] [~~~ .amount 1
-participantNumber[1..1] -iMsurance carrier 1
1..1 | -primarylnsuranceCarrier[0..1] Tttt |+ make appointment()
i 1 +calculate [ast visit()
i +change status(}
1..1 ! +provides medical history()
1
! . .= .=
o_* | + primary suffers b
- | insurance
| carrier
Insurance Carrier Table !
-name|1..1] |
-parnticipantNumber[1..1]
Suffer Table | — - - - - -
. 0..*
1.. _participantMumber[1..1]
—name[1..1]
1..1 1=
Symptom Table Symptom
-name([1..1] F———— - - - _name
Appointment Table
—timme[1..1]
-date]1..1]

-reason|1..1]
-participanttNumber[1_.1]

Optimizing RDBMS-Based
Object Storage

® Primary (often conflicting) dimensions:
® Improve storage efficiency
® Normalize the tables
® Reduce redundant data and the occurrence of null values
® Improve speed of access

® De-normalize some tables to reduce processing time

® Place similar records together (clustering)

® Add indexes to quickly locate records

Normalization

® Store each data fact only once in the database
® Reduces data redundancies and chances of errors

® First four levels of normalization are
® () Normal Form: normalization rules not applied

® | Normal Form: no multi-valued attributes (each cell has
only a single value)

* Eliminate fields which are arrays or repeated.

* They can be new tables.

Form 1 Violation

“Order Number : unsigned long
-Date : Date
“Cust 1D : unsigned long
-Last Mame : Stnng
-First Mame : Stnng
-State : String
-Tax Rate : float
-Product 1 Number : unsigned long

-Product 1 Qty. : unsigned long
-Product 2 Mumber : unsigned long
-Product 2 Desc. : String
-Product 2 Price : double
F'h:-t:lu«:t.'!1'__;‘t5|r unsigned
-Product 3 Number : unsi ong
-Product 3 Desc. - String
-Product 3 Price : double
-Product 3 Qty. : unsigned long

Sample Records:
Order Cust Last Firsk Tax Prod. 1 Prod. 1 Prod. 1 Prod.1 Prod. 2 Prod. 2 Prod. 2 Prod. 2 Prod. 3 Prod.3 Prod. 2 Prod. 3
Mumber Dale I Name| MName Stale Kate Number Desc. Price Qly. Number Price OQty. Number Desc. Price Qly.
239 11/23/00 1035 Black John MO 0.05 Chesse Tray 545.00
260 112400 1035 Black John MO 0.05 Wine Gift Pack F&0.00
273 112700 1035 Black MDD 0.05% Bottle Openar §12.00

n
41 112300 1123 | Williams ~ Mary
262 112400 1123 | Williams ~ Mary
287 112700 1123 | Williams ~ Mary
290 113M00 1123 | Williams Mary

Wina Gift Pack FE0.00
Bottle Openar §12.00
Bottle Opener §12.00

Cheese Tray §45.00

g
RERNENER

2
1
1

CA 2

CA 2

CA 2

CA 3
734 1172300 7242 DeBery Amn DC 0.065 CheeseTray $45.00 2
237 /2300 7242 DeBery Ann DC 006S 111 Wine Guide $15.00 1 444 Wine Gift Pack $60.00 1
238 1172300 2242 DeBery Ann DC 0065 444 Wine Gift Pack $60.00 1
245 112400 22427 DeBery Ann DC 0065 222 Botle Openar $12.00 1
250 1172400 2247 DeBery Ann DC 0065 222 Bottle Opener §12.00 1
252 112400 2247 DeBery Ann DC 0065 222 Bottke Opener ~ §12.00 1 444 Wine GiftFack §60.00
253 1172400 2247 DeBery Amn DC 0065 222 Botlle Opener §12.00 1 444 Wine Gift Pack $60.00 1
297 112000 2247 DeBery Ann DC 0065 333 Jams & Jellies §20.00 2
243 112400 4254 Bailey Ryan MD 005 555 CheesaTray $45.00 o
246 112400 4254 Bailey Ryan MDD 005 333 Jams & Jellies §20.00 3
248 1172400 4254 Bailey Ryan MDD 005 222 Bottle Openar §12.00 1 133 ams&Jellies §2000 2 111 WineGuide §1500 1
235 112300 9500 Chin April KS 008 222 Bottle Openar §12.00 1
242 112300 9500 Chin Aprl KS 005 333 Jams & Jelliss §20.00 3 y

K5 005 212 2

K5 2

244 1172400 9500 Chin April

Botile Opener §12.00

=
—_
=

Normalization

® First four levels of normalization are
® D Fields depend on whole primary key

* New order: primary key is order and product number
* Description depends only on product

* New table for product info
® 3 None of the fields depend on the primary key

* No field depends on non-primary key.

* Tax rate depends on state.

* Add table of states and rates.

Form 2 Violation

Sample Records:
Order Table Product Order Table
Order Cust Last First Tax Order Product Product Product Product
Mumber Date {10] Mame MName State Rate MNumber Number Desc Price Qty
23% 112300 1035 Black John MD 005 234 555 Cheese Tray 545.00 2
260 11/24/00 1035 Black John MD 0105 260 EER) Wine Gift Pack 560.00 1
273 12700 1035 Black John MD 005 273 222 Bottle Opener 512.00 1
241 112300 1123 Williams Mary CA 008 24 EER) Wine Gift Pack 560.00 2
262 112400 1123 Williams Mary CA 008 262 222 Bottle Opener 512,00 2
287 12700 1123 Williams Mary CA 0.08 287 i Bottle Opener $12.00 2
290 113000 1123 Williams Mary CA 008 250 555 Cheese Tray 545.00 3
234 112300 2242 DeBerry Ann DC 0065 234 555 Cheese Tray §45.00 2
237 M2300 2242 DeBerry Ann DC 0065 —— . |. I 237 111 Wine Guide 515.00 1
238 1172300 2242 DeBerry Ann DC 0065 | 00 T ‘{ 237 444 Wine Gift Pack 560.00 1
245 112400 2242 DeBerry Ann DC 0065 I~ 238 444 Wine Gift Pack 560.00 1
250 11/24/00 2242 DeBerry Ann DC 0065 245 222 Bottle Opener 512.00 1
251 112400 2247 DeBerry Ann D 0.06S 250 222 Baottle Opener 512.00 1
253 112400 2242 DeBerry Ann DC 0065 252 222 Bottle Opener §12.00 1
297 13000 2242 DeBerry Ann DC 0.065 252 dad Wine Gift Pack 560.00 2
243 112400 4254 Bailey Ryan MD 0.05 253 222 Bottle Opener §12.00 1
246 112400 4254 Bailey Ryan MD 0105 253 EER) Wine Gift Pack 560.00 1
248 11/24/00 4254 Bailey Ryan MD 005 297 EEE Jams & Jellies 520.00 2
235 112300 9500 Chin April KS 0.05 . 243 555 Cheese Tray 545.00 2
242 112300 9500 Chin April K5 0.05 "‘--.,N 246 EEE Jams & Jellies 520.00 3
244 1124000 9500 Chin Aprl KS 0.05 o —— 248 277 Bottle Opener 512.00 1
251 112400 9500 Chin April K5 0.05 ., 248 333 Jams & Jellies 520.00 2
248 111 Wine Guide §15.00 1
235 2212 Bottle Opener 512.00 1
242 EEE Jams & Jellies 520.00 3
24 222 Bottle Opener 512.00 2
- 251 111 Wine Guide 515.00 2

Form 3 Violation

~Cust |D : unsigned long

-Crrder Number @ unsigned long
-Date : Date

-Last Name : String
-First Mame : String

MNote: Cust 1D will serve
as the primary key of
Customer.

Sample Records:

1.

1

o

-Qty @ unsigned long

-Order Mumber : unsigned long
-Product Number : unsigned long

0.* 1.

-Cust 1D : unsigned long
-5State : String
-Tax Rate : float

MNote: Order Number will serve
as the primary key of Crder.
MNote: Cust ID will serve as a
foreign key in Order.

Mote: Order Mumber will
serve as part of the
primary key of Product
Oirder.

Note: Order Number also
will serve as a foreign key
in Product Order.

MNote: Product Number
will serve as part of the
primary key in Product
Oirder.

Mote: Product Number

also will serve as a foreign
key in Product Order.

-Product Number : unsigned long
-Product Diesc : String
-Price : double

Note: Product Number will
serve as part of the primary
key of Product Order.

Customer Table

Cust Last First

I] MName Name
1035 Black John
1123 Williams Mary
2242 DeBerry Ann
4254 Bailey Ryan
9500 Chin April

Last Name and First
MName was moved
to the Customer
table to eliminate
redundancy

Order Table
Order Cust Tax
Number Diate 18] State Rale
239 112300 1035 MDD 0.05
260 112400 1035 MDD 0.05
273 112700 1035 MD 0.05
iyl 112300 1123 CA 0.08
262 112400 1123 CA 0.08
287 112700 1123 CA 0.08
290 113000 1123 CA 008
234 112300 2242 DC 0.065
237 112300 2242 DC 0.065
238 11/23/00 2242 DC 0.065
245 1172400 2242 DC 0.065
250 1172400 2242 DC 0.065
252 112400 2242 DC 0.065
253 11/24/00 2242 DC 0.065
297 11/30/00 2242 DC 0.065
243 112400 4254 MDD 0.05
246 112400 4254 MDD 0.05
248 112400 4254 MDD 0.05
235 112300 9500 KS 0.05
242 11/23/00 9500 KS 0.05
244 112400 9500 KS 0.05
251 11/24/00 9500 KS 0.05

Product Order Table Product Table
Order Product Product Product Product Product
Number MNumber Oty Number Desc Price
239 555 2 111 Wine Guide $15.00
260 444 1 222 Bottle Opener $12.00
273 222 1 333 Jams & Jellies 320,00
| 444 2 444 Wine Gift Pack 60,00
262 222 2 555 Cheese Tray $45.00
287 222 2 4
290 555 3
234 555 2
237 111 1
237 444 1
238 444 1
245 222 1 Product Desc and Price
250 222 1 was moved to the Product
252 223 1 table to eliminate
252 444 2 redunda
253 222 1 -
253 444 1
297 333 2
243 555 2
246 333 3
248 222 1
248 333 2
1
1
3
2
2

Steps of Normalization

0 Normal Form

Do any tables have repeating fields? Do some Yes: Remove the repeating fields. Add a new
records have a different number of columns table that contains the fields that repeat.
from other records?

‘ MNo: The data model is in TNF

First Normal Form

4

Is the primary key made up of more than one Yes: Remove the partial dependency. Add a
field? If so, do any fields depend on only a part | new table that contains the fields that are

of the primary key? partially dependent.
‘ MNo: The data model is in 2NF

Second Normal Form

$

Do any fields depend on another nonprimary Yes: Remove the transitive dependency.
key field? Add a new table that contains the fields
that are transitively dependent.

‘ No: The data model is in 3NF l

!

Third Normal Form

Optimizing Data Access Speed

® De-normalization
® Table joins require processing

® Add some data to a table to reduce the number of joins
required (Increases data retrieval speed)

® Creates redundancy and should be used sparingly
® Clustering

® DPlace similar records close together on the disk
® Reduces the time needed to access the disk
T ® Ordering records in a table?

Denormalization
[ProductOmer |

-Order Number : unsigned long
-Product Mumber : unsigned long
-Qty : unsigned long

-Cust ID : unsigned long -Order Mumber : unsigned long | 0_* 1..* |-Product Number : unsigned long (idl)
-Last Name : String -Date : Date -Product Desc : String
-First Name : String 1.1 0..*|-Cust ID : unsigned long -Price : double
-State : String
D__i
~Order Number (PK) : unsigned long
State : String -Cust ID (PK) : unsigned long -Date : Date _
-Tax Rate : float -Last Mame : String -State (FK) : String
-First Name : String 1.1 1..# |-Cust ID {FK} : unsigned long
t\ -Customer Last MName : String

both classes

Optimizing Data Access Speed
(cont.)

® Indexing
® A small file with attribute values and a pointer to the record on the
disk
® Search the index file for an entry, then go to the disk to retrieve the
record
® Accessing a file in memory is much faster than searching a disk

® Adds overhead to update; most efficient when lookup >> update.

Use indexes sparingly for transaction systems.

Use many indexes to increase response times in decision support systems.

For each table, create a unique index that is based on the primary key.

For each table, create an index that is based on the foreign key to improve the performance of joins.

Create an index for fields that are used frequently for grouping, sorting, or criteria.

Optimizing Data Access Storage

® Estimating Data Storage Size _

® . . Order Number 8
Use volumetrics to estimate Dk v
amount of raw data + overhead wotish 1L 4
. Last Name 13
requ1rements First Name 9
® This helps determine the necessary i‘ate , i
moun
hardware capacity — 5
Record Size 49
Owverhead 30%
Total Record Size 63.7
Initial Table Size 50,000
Initial Table Volume 3,185,000
Growth Rate/Month 1,000
Table Volume @ 3 years 5,478,200

Designing Data Access &
Manipulation Classes

® Classes that translate between the problem domain
classes and object persistent classes

® ORDBMS: create one DAM for each concrete PD
class

® RDBMS: may require more classes since data is
spread over more tables

® (Class libraries (e.g., Hibernate) are available to help

ORDBMS DAM classes

ORDBMS Tables

Data Access and
Manipulation Classes

Participant Table

-lastname[1..1]
-firstname(1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-SubClassObjects[1..1]

Problem Domain Classes

P —

I

Patient Table
-amount[1..1] F———-
-Participant[1..1]
-Appts[0..7]
-Symptoms[1..%]
-insurance carrier[0..*]
-Primary Insurance Carrier[0..*]
0.+ 1 0.*
1.*
Symptom Table
-name[1..1]
-Patients[0..*]
G“‘
Appointment Table

-Patient[1..1]
-time(1..1]
~date[1..1]
-reason|1..1]

+ReadApptTable)
+WriteApptTable()
+ReadAppti(}

Participant
-lastname
(abstract — no DAM) firstname
_ _ _ _ _ -address
-phone
-birthdate
-/ age
- — —— _“__1| N : Appointment
L schedulesp |-time
—————3 -amount -date
Patient-DAM -insurance carrier 1 0. [P
e —— ke intment() . :
. +make appointme: +cancel without notice()
+ReadPatientTablel) +calculate fast visit() - =
+WritePatientTable(+change status() I :
+ReadPatient) +provides medical history() i |
+WritePatient() 0.* 0.* i
+ primary suffers E
insurance i 1
carrier |
e !
Symptom-DAM |
| _ _ _ R Symptom | i
-name i
+ReadSymptomTable(} R — - !
| | +WriteSymptomTable(} i i
i +ReadSymptomi() | | |
I | +WriteSymptom() I :
[= = = - - o I
-
Appointment-DAM i
i
1
1
1
]
i
i

+WriteAppt()

RDBMS DAM classes

RDBMS Tables Data Access and Problem Domain Classes
Manipulation Classes
Participant Table Participant
lastname[1..1] lastname
firstname(1..1] (abstract — no DAM) firstname
-address[1..1] -address
-phane[1_1] " -phone
-birthdate[1..1] -birthdate
-participantNumber[1..1] - age
1.1 B
Appointment
1_1 Patient-DAM schiedules k -time
-date
. | 0.* | -reason
1.1 Patient Table +ReadPatient Table() Fatient +eancel without notice()
-amount]1.1] +WritePatientTable() — =
-participantNumber(1..1] +ReadinsuranceCarrierTabled 4 -amount
1-1 | -primarylnsuranceCarrier[0..1] +g':f;u";'?r'ﬁ$"ﬁﬁw|eﬁ -insurance carier 1
+ rTa -
________ +WritaSufferTablel) o — o | +make appointment()
1.1 | +calcwlate last wisit(}
+ReadApptTabde) i 1
1. +WriteApptTablal i +change status()
+ReadPatient() : +provides medical historyr)
0..® +WritePationt() H sprimary | oo* 0.
i Insunnce
Insurance Carrier Table |« i caier sl
-namef1..1] | _______ S :
-participantNumber[1.1] o
i
i Symptom
Symiptom-DAM
Sufier Table | joTmsTssssssss=ssssss--S) name
[Y
— i —
0.* |-participantMNumber[1.7)f A +ReadSymptomTable() '
S o I +WriteSymptomTablel) :
N +ReadSufferTable) i
+WriteSufferTable() H
P -1 +ReadSymptom() i
1.1 ! +WriteSymptomi} '
Symptom Table [¢-------------7 _— E
-mamefl..1] |f-=====ccac=== ,.___:

-time[1..1] +ReadApptTabler
-date[1..1] +WriteAppiTable()

-reason[1..1] +ReadAppt()
-personMumber]1..1] +WriteAppel)

Nonfunctional Requirements & Data
Management Layer Design

® Operational requirements: affected by choice in hardware
and operating system

® Performance requirements: speed & capacity issues

® Security requirements: access controls, encryption, and
backup

® Cultural & political requirements: may affect the data storage
(e.g., expected number of characters for data field, required
format of a data field, local laws pertaining to data storage,
etc...)

VERIFYING AND VALIDATING THE
DATA MANAGEMENT LAYER

® Test the fidelity of the design before
implementation

® Verifying and validating the design of the data
management layer falls into three basic groups:

1. Verifying and validating any changes made to the
problem domain

2. Dependency of the object persistence instances on the
problem domain must be enforced

3. The design of the data access and manipulation classes
need to be tested

Summary

® Object Persistence Formats

® Mapping Problem-Domain Objects to Object-Persistence
Formats

® Optimizing RDBMS-Based Object Storage

® Nonfunctional Requirements and Data Management Layer
Design

® Designing Data Access and Manipulation Classes

® Nonfunctional Requirements & Data Management Layer
Design

® Verifying and validating the data management layer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

