% Form of board, x for full, o for vacant spaces. Starting is
% [ [o], [x, x], [x, x, x], [x, x, x, x] ]
% Legal jumps along a line.
linjmp([x, x, o | T], [o, o, x | T]).
linjmp([o, x, x | T], [x, o, o | T]).
linjmp([H|T1], [H|T2]) :- linjmp(T1,T2).
% Rotate the board
rotate([ [A], [B, C], [D, E, F], [G, H, I, J], [K, L, M, N, O]],
[ [K], [L, G], [M, H, D], [N, I, E, B], [O, J, F, C, A]]).
% A jump on some line.
horizjmp([A|T],[B|T]) :- linjmp(A,B).
horizjmp([H|T1],[H|T2]) :- horizjmp(T1,T2).
% One legal jump.
jump(B,A) :- horizjmp(B,A).
jump(B,A) :- rotate(B,BR), horizjmp(BR,BRJ), rotate(A,BRJ).
jump(B,A) :- rotate(BR,B), horizjmp(BR,BRJ), rotate(BRJ,A).
% Series of legal boards.
series(From, To, [From, To]) :- jump(From, To).
series(From, To, [From, By | Rest])
:- jump(From, By),
series(By, To, [By | Rest]).
% Print a series of boards. This puts one board per line and looks a lot
% nicer than the jumble that appears when the system simply beltches out
% a list of boards. The write_ln predicate is a built-in which always
% succeeds (is always satisfied), but prints as a side-effect. Therefore
% print_series(Z) will succeed with any list, and the members of the list
% will be printed, one per line, as a side-effect of that success.
print_series_r([]) :-
write_ln('*******************************************************').
print_series_r([X|Y]) :- write_ln(X), print_series_r(Y).
print_series(Z) :-
write_ln('\n*******************************************************'),
print_series_r(Z).
% A solution.
solution(L) :- series([[o], [x, x], [x, x, x], [x, x, x, x], [x, x, x, x, x]],
[[x], [o, o], [o, o, o], [o, o, o, o], [o, o, o, o, o]], L).
% Find a print the first solution.
solve :- solution(X), print_series(X).
% Find all the solutions.
solveall :- solve, fail.
% This finds each solution with stepping.
solvestep(Z) :- Z = next, solution(X), print_series(X).