
Memory Management
Ch. 3

CS 422 · T W Bennet · Mississippi College 1

Memory Hierarchy

Cache RAM Disk

Compromise between speed and cost.

Hardware manages the cache.

OS has to manage disk.
Memory Manager

CS 422 · T W Bennet · Mississippi College 2

Memory Hierarchy

Swap Area

Cache

CPU

DRAM Disk

Memory

Main

SRAM

CS 422 · T W Bennet · Mississippi College 3

Two Classes

Move back and forth between memory and disk.

Don’t

CS 422 · T W Bennet · Mississippi College 4

One Program at a Time

(a) (b) (c)

0xFFF …

0 0 0

User
program

User
program

User
program

Operating
system in

RAM

Operating
system in

RAM

Operating
system in

ROM

Device
drivers in ROM

Old Main/Mini Palm/Embedded DOS

CS 422 · T W Bennet · Mississippi College 5

Multi-Programming: Fixed Partitions

Set up fixed partitions at boot time.

Place each job into the largest
partition in which it will fit.

Wasted space in each partition.

Small jobs when large partition free:
Waste time or space.

O/S

P1

P2

P3

P4

CS 422 · T W Bennet · Mississippi College 6

Multi-Programming: Variable Partitions

O/S O/S

P1

O/S

P1

P2

P3

O/S

P1

P3

P4

O/S

P1

P5

P3

P4

O/S

P6

P5

P3

P4

O/S

P6

P5

P7

P4

CS 422 · T W Bennet · Mississippi College 7

Multi-Programming: Variable Partitions

Place jobs in available space as they arrive.

Creates Fragments

Can’t fill an empty spot with a larger job
Exact fit very unlikely

Almost always something smaller

Creates small, useless empty slots.

Compacting is expensive.

CS 422 · T W Bennet · Mississippi College 8

Swapping

A Job may be removed from memory and returned later.

(a)

Operating
system����A (b)

Operating
system

����AB
(c)

Operating
system

�
A

B

C

(d)

Time

Operating
system

��������BC (e)

D

Operating
system�����BC (f)

D

Operating
system

��������C (g)

D

Operating
system

�
A

C

CS 422 · T W Bennet · Mississippi College 9

Consider Two At Once

0
4
8

12
16
20
24
28

0
4
8

12
16
20
24
28

(a) (b)

0
4
8

12
16
20
24
28ADD

JMP 24

MOV

(c)

16384
16388
16392
16396
16400
16404
16408
16412

ADD

JMP 24

MOV

0 16380

JMP 28

CMP

0 16380
...

...
...

16380

...

JMP 28

CMP

0

0 32764

CS 422 · T W Bennet · Mississippi College 10

Relocation

Compiler assumes all programs start at address zero.

Add a base value to each address to
adjust to the actual memory location.

CS 422 · T W Bennet · Mississippi College 11

Relocation Required

A program may be have to run at different
memory locations at different times.

Relocation at Start of Execution

The program may be placed into a
partition anywhere in memory.

Relocation During Execution

Compacting to eliminate fragments.

Swapping out and back in.

CS 422 · T W Bennet · Mississippi College 12

Relocation Methods

Relocation at Start of Execution

O/S can add the base when copying the
executable from disk into memory.

Executable file must contain a relocation table
to identify which values are pointers.

Relocation During Execution

Hardware adds base value to each address
produced by the program.

CS 422 · T W Bennet · Mississippi College 13

Base And Limit Registers

28 + 16384 = 16412

0
4
8

12
16
20
24
28

(c)

ADD

JMP 24

MOV

JMP 28

CMP

...

0

...

0

16384
16388
16392
16396
16400
16404
16408
16412

16380

32764

16384

16384

Base register

Limit register

CS 422 · T W Bennet · Mississippi College 14

Address Space

Programs operate in an address space.

The set of addresses used to address memory.

Usually differ in some way from the hardware addresses.

Hardware maps addresses and limits
programs to their own space.

Mapping and protection.

CS 422 · T W Bennet · Mississippi College 15

Overlays

Allows programs larger than memory.

Programmer breaks his program into regions.

Regions are moved in and out under program request.

This is an obsolete technique

CS 422 · T W Bennet · Mississippi College 16

Overlays

Main:
Load Overlay1
Perform Input
Unload Overlay1
Load Overlay2
Perform Computation
Unload Overlay2
Load Overlay3
Perform Output

Overlay1:
Input functions

Helper functions

Overlay3:
Output functions

Overlay2:

MemoryProgram

CS 422 · T W Bennet · Mississippi College 17

Paged Virtual Memory

Avoids fragmentation by dividing a
program into fixed-size blocks.

Automates the overlay technique.
Programs appear to have more memory than they really do.

CS 422 · T W Bennet · Mississippi College 18

Virtual Memory

Divide programs up into fixed-size pages.

Divide memory up into fixed size page frames.

Put the pages in whatever frames are free.

Use a page table to map the programs virtual
addresses to real addresses.

Pages that don’t fit in memory
stay on disk and are brought in on demand.

Generally, each process will have its own page table.

CS 422 · T W Bennet · Mississippi College 19

Virtual Memory
Virtual

address
space

Physical
memory
address

60K-64K

56K-60K

52K-56K

48K-52K

44K-48K

40K-44K

36K-40K

32K-36K

28K-32K

24K-28K

20K-24K

16K-20K

12K-16K

8K-12K

4K-8K

0K-4K

28K-32K

24K-28K

20K-24K

16K-20K

12K-16K

8K-12K

4K-8K

 0K-4K

Virtual page

Page frame

X

X

X

X

7

X

5

X

X

X

3

4

0

6

1

2

CS 422 · T W Bennet · Mississippi College 20

On A Memory Reference

The hardware translates the address using the page table.

If the page is in memory, the hardware
address is sent to the memory unit.

If not, trap to the O/S: Page fault

If a large proportion of memory references produce page faults,
the system will run very slowly. This is called thrashing.

CPU

Data

Virtual

Memory
MMU

Address
Real

Address

Page Fault

CS 422 · T W Bennet · Mississippi College 21

Pages and Address Bits

Four four-byte pages.

First part of address is the page number.

Offset carries into page number
at each page boundary.

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10

11 00
11 01
11 10
11 11

Page 0

Page 1

Page 2

Page 3

Offset Within Page

Page Number

10 11

CS 422 · T W Bennet · Mississippi College 22

Address Translation

Virtual Address

Page Table

Virtual Page Number Offset in Page

Real Page Number Offset in Page

Page Table
Entry

CS 422 · T W Bennet · Mississippi College 23

Page Table Entry Structure

Caching
disabled Modified Present/absent

Page frame number

Referenced Protection��������
CS 422 · T W Bennet · Mississippi College 24

Where Is The Page Table?

In the MMU: The table is too big.

In memory: Memory is too slow.

Compromise: Translation Lookaside Buffer (TLB)

The Page table is in memory.

The TLB is a hardware cache of Page Table Entries (PTEs).

Most lookups hit the TLB.

TLB traditionally managed by hardware.
Newer architectures move this to the O/S.

CS 422 · T W Bennet · Mississippi College 25

TLB

222
Valid Virtual page Modified Protection Page frame222

1 140 1 RW 31222
1 20 0 R X 38222
1 130 1 RW 29222
1 129 1 RW 622
1 19 0 R X 50222
1 21 0 R X 45222
1 860 1 RW 14222
1 861 1 RW 752221

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

CS 422 · T W Bennet · Mississippi College 26

Multi-Level Page Table

10 10 12

Virtual Address

The Primary PT A Secondary PT

Real Address

1220

CS 422 · T W Bennet · Mississippi College 27

Multi-Level Page Table

Each table is smaller.

Secondary page tables may be swapped out.
Only primary must stay in memory.

A memory reference may generate two faults.

The 386 class CPUs use a two-level.

Some newer designs use three levels.

CS 422 · T W Bennet · Mississippi College 28

Inverted Page Table

Keep an entry for each page frame,
not for each virtual page.

Much savings when VM much larger than real memory.

Can no longer just index with the address to find the entry.

Most lookups hit the TLB.

O/S keeps a hash table for ones that don’t.

CS 422 · T W Bennet · Mississippi College 29

Page Replacement

On a page fault, the O/S must bring the page into memory.

If all real pages are in use, one must be replaced.

The policy used to choose the victim is the page
replacement algorithm.

The goal is to minimize page faults.

CS 422 · T W Bennet · Mississippi College 30

Optimal Replacement

Choose the page which remains unwanted for the longest time.

Impossible to implement.
Requires prediction of the future.

Used as a comparison for practical methods.

CS 422 · T W Bennet · Mississippi College 31

Optimal Replacement Example

Virtual Page References:

1 2 3 4 5 4 6 3 6 2 3 7 1 2 5 3 6 5 6

Real Memory:

0

1

2

3

4CS 422 · T W Bennet · Mississippi College 32

Not Recently Used

Depends on a referenced and modified bits in the PTE.
These are set on modification or reference.

Periodically, all referenced bits are cleared.

Four classes (RM):

• 00: Not refed, not mod.

• 01: Not refed, modified.

• 10: Referenced, not mod.

• 11: Referenced, modified.

Choose a page at random from the
lowest-numbered non-empty class.CS 422 · T W Bennet · Mississippi College 33

FIFO/Second Chance

Plain FIFO: Choose the page which has been
in memory the longest.

Keep a queue: Add new pages to the end;
evict pages at the head.

May throw out popular pages.

Second chance algorithm

Before eviction, check the reference bit.

If it is one, clear it, move the page
to the tail, and check the next one.CS 422 · T W Bennet · Mississippi College 34

FIFO/Second Chance Example

Virtual Page References:

1 2 3 4 5 4 6 3 6 2 3 7 1 2 5 3 6 5 6

Real Memory:

0

1

2

3

4CS 422 · T W Bennet · Mississippi College 35

Clock Algorithm

A more efficient version of second-chance.

The pages are arranged in a circular linked list. There is a
pointer Current to the current page frame.

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
 R = 0: Evict the page
 R = 1: Clear R and advance hand

A
B

C

D

E

F
G

H

I

J

K

L

CS 422 · T W Bennet · Mississippi College 36

Clock Example

Virtual Page References:

1 2 3 4 5 4 6 3 6 2 3 7 1 2 5 3 6 5 6

Real Memory:

0

1

2

3

4CS 422 · T W Bennet · Mississippi College 37

LRU

Choose the page which has remained
unused for the longest time.

Best possible algorithm.

Expensive to implement.

Can be done with specialized hardware.

CS 422 · T W Bennet · Mississippi College 38

LRU Example

Virtual Page References:

1 2 3 4 5 4 6 3 6 2 3 7 1 2 5 3 6 5 6

Real Memory:

0

1

2

3

4CS 422 · T W Bennet · Mississippi College 39

Page Aging

Each page has a counter which keeps its age.

Each PTE has a referenced bit.

At Each clock tick:

• Shift each age right.

• Set the high bit for each page
which has its referenced bit on.

• Clear all referenced bits.

Evict the page with the smallest age.

CS 422 · T W Bennet · Mississippi College 40

Aging Example

Page

0

1

2

3

4

5

R bits for
pages 0-5,
clock tick 0

10000000

00000000

10000000

00000000

10000000

10000000

1 0 1 0 1 1

(a)

R bits for
pages 0-5,
clock tick 1

11000000

10000000

01000000

00000000

11000000

01000000

1 1 0 0 1 0

(b)

R bits for
pages 0-5,
clock tick 2

11100000

11000000

00100000

10000000

01100000

10100000

1 1 0 1 0 1

(c)

R bits for
pages 0-5,
clock tick 3

11110000

01100000

00100000

01000000

10110000

01010000

1 0 0 0 1 0

(d)

R bits for
pages 0-5,
clock tick 4

01111000

10110000

10001000

00100000

01011000

00101000

0 1 1 0 0 0

(e)CS 422 · T W Bennet · Mississippi College 41

LRU and Aging

Aging does not distinguish when a
reference occurs during a clock period.

Aging does not distinguish pages old enough to have zero age.
Zero is reached when the number of

clocks is the number of bits.

CS 422 · T W Bennet · Mississippi College 42

Working Set Theory

For any process, W (k, t) is set of pages at time t that the
process has referenced during the period k.

k is theoretically a number of memory references.

In practice, a time period is often used.

Time is counted only when the process is running.

CS 422 · T W Bennet · Mississippi College 43

Working Set

References back from t:
18, 24, 17, 24, 15, 17, 17, 18, 24, 18, 17, 24, 23, 18, 15, 24

W (2, t) = {18, 24}

W (3, t) = W (t, 4) = {17, 18, 24}

W (5, t) = . . . = W (t, 12) = {15, 17, 18, 24}

W (13, t) = . . . = W (t, 16) = {15, 17, 18, 23, 24}

w(k,t)

kCS 422 · T W Bennet · Mississippi College 44

Using The Working Set

Choose some arbitrary amount of time to
be the size of the WS.

Called τ

Idea is to evict a page which is not in the WS.

Too impractical to compute the exact working set.

CS 422 · T W Bennet · Mississippi College 45

Basic Support

We still have referenced and modified bits set by hardware.

We have a virtual time for each process.
A counter which runs while the process is on the CPU.

We have periodic timer interrupts used to
clear the referenced bits.

CS 422 · T W Bennet · Mississippi College 46

Basic Algorithm

Each PTE has a field for the last time referenced.

On each page fault, scan the whole table.

For each referenced PTE, set the last time
referenced to the process virtual time.

For un-referenced PTEs, the age is the
current time less the last referenced field.

Pages older than τ are listed for removal; the first is replaced.

If no page is older then τ , the oldest is replaced.

If all pages are referenced, one is chosen at random.CS 422 · T W Bennet · Mississippi College 47

WSClock Algorithm

Scan the PTEs in a circular list with a current location.

• If R = 1, clear and proceed.

• If R = 0 ∧ age > τ ∧ M = 0, evict.

• If R = 0 ∧ age > τ ∧ M = 1, schedule write and proceed.

• If all around with some writes, wait for one to finish.

• If all around with no writes, take the current page.

May limit the number of writes scheduled.

CS 422 · T W Bennet · Mississippi College 48

Summary

22
Algorithm Comment22

Optimal Not implementable, but useful as a benchmark22
NRU (Not Recently Used) Very crude22
FIFO (First-In, First-Out) Might throw out important pages22
Second chance Big improvement over FIFO22
Clock Realistic22
LRU (Least Recently Used) Excellent, but difficult to implement exactly22
NFU (Not Frequently Used) Fairly crude approximation to LRU22
Aging Efficient algorithm that approximates LRU well22
Working set Somewhat expensive to implement22
WSClock Good efficient algorithm221
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CS 422 · T W Bennet · Mississippi College 49

Belady’s Anomaly

More memory, more faults.

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 4 0 1 2 3 4

P P P

P PP P P P P PP P

P P P P P P 9 Page faults

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

(a)

Youngest page

Oldest page

All pages frames initially empty

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

10 Page faults
0 0 0 1 2 3 4 0 1

(b)

Youngest page

Oldest page

CS 422 · T W Bennet · Mississippi College 50

Stack Algorithms

Stack algorithms do not display Belady’s Anomaly.

M(m, r) ⊆ M(m + 1, r)

At r through the execution, the pages kept in m pages of real
memory is a subset of those kept in m + 1 pages.

LRU is a stack algorithm.

CS 422 · T W Bennet · Mississippi College 51

Stack Algorithms

By definition,

if p ∈ M(m, r)
then p ∈ M(m + 1, r)

So, if any page is in memory when the memory size is m, it is
also in memory when the size is m + 1.

So adding memory cannot create a new page fault.

CS 422 · T W Bennet · Mississippi College 52

Local v. Global

When process P faults we can:

Select the “best” page from among all of them.
global

Select the “best” page from those owned by P .
local

Local means that P owns its frames.
Global means they are shared.

Global allows processes’ working set to change.

Most replacement algorithms can use either
Not working-setCS 422 · T W Bennet · Mississippi College 53

Page Fault Frequency (PFF)

Local should use some policy to adjust the
number of pages each process owns.

Measure the time frequency of page faults for each P .
Gives a sense if it owns enough page frames.

Add frames when PFF is high
Remove frames when PFF is low

CS 422 · T W Bennet · Mississippi College 54

Load Control

Can have too much load for the existing memory.
If total working set exceeds memory, you will thrash.

If PFF is high for some processes and low for none.

Swap something out.

Swapping may also take account of I/O
behavior to keep CPU busy.

CS 422 · T W Bennet · Mississippi College 55

Page Size

May be fixed or limited by hardware.

Larger pages increase internal fragmentation.
Half the last page.

Larger pages may increase memory requirements.
A whole page must be brought in, even if the

program doesn’t need it all.

Smaller pages mean larger page tables.

Smaller pages usually take more time per
byte to transfer to disk.

4K is common 8K increasing popularityCS 422 · T W Bennet · Mississippi College 56

Balance Page Size and Table Size

s = Process size
p = Page size
e = PTE size

overhead =
se

p
+

p

2

Set first derivative equal to zero to find minimum:

p =
√

2se

If s = 1MB, e = 8, then p = 4K

CS 422 · T W Bennet · Mississippi College 57

Separate Instruction and Data Spaces

Separate instruction and data memories.

One is chosen based on type of purpose of fetch.

Separate page tables.

CS 422 · T W Bennet · Mississippi College 58

Processes Running The Same Program

Several processes may run the same program.

The same pages can be mapped into each process.

May be possible to map at the first level.

Need to keep track of shared pages in case one is swapped out.

CS 422 · T W Bennet · Mississippi College 59

After a Unix Fork

Both processes have the same process image.
Generally share the pages.

Each page is shared until a process changes one.
Separate copies are then made: Copy On Write.

Invisible to processes.

When a process forks, its pages are set read-only and shared.

If either process writes a page, it traps.

O/S makes separate copies of each page and restarts.

Only pages actually written must be copied.CS 422 · T W Bennet · Mississippi College 60

Sharing Pages for Communication

Visible to Processes

Processes may be able to name portions of address space.

They can agree to share these regions.
The O/S maps the pages into both tables.

CS 422 · T W Bennet · Mississippi College 61

Cleaning Policy

Helps to have a pool of pages which are ready to evict.
Avoids waiting for the decision when a page is needed.

A paging daemon periodically wakes up and runs the
selection algorithm to find pages to evict.

When a dirty page is chosen to evict, the write-back is started.
Likely to be clean whenever needed.

Doomed pages retain their content until needed.

If referenced before being replaced, no page-in is needed.

CS 422 · T W Bennet · Mississippi College 62

OS Tasks

Allocate page table at process start.
In memory when process is not swapped out.

When the process is started on the CPU, the
MMU must be set to use the page table.

Service page faults.

Free the page table when the program exits.

CS 422 · T W Bennet · Mississippi College 63

Page Faults

CPU traps and starts the OS.

Vector saves registers and calls a function in the OS.

Find which virtual page was referenced.
OS register, or find the saved PC and analyze it.

If the reference was illegal, the process is terminated.
Otherwise, it is suspended until the page is brought in.

Choose a page frame
Perhaps from the list maintained by the paging daemon.

CS 422 · T W Bennet · Mississippi College 64

Page Faults, Cont.

If the frame is dirty, schedule the I/O.

Schedule an I/O to bring the page in from disk.

Update the page table.

Faulting process is marked ready.

When scheduled, registers are reloaded.
Faulting instruction is retried.

CS 422 · T W Bennet · Mississippi College 65

Restarting The Instruction

A single instruction involves several addresses.
Its own, and perhaps several arguments.

Any of these might cause the fault.

MOVE
6

2

1000
1002

1004

Opcode
First operand

Second operand

16 Bits

MOVE.L #6(A1), 2(A0)

}
}
}

If the instruction bytes are fetched separately, the PC may
be part way through the instruction.

May be hard to know where the start of the instruction is.

Hardware may provide special registers to help out the O/S.CS 422 · T W Bennet · Mississippi College 66

Computer Organization Note

The Pentium has most of the difficult
features mentioned on the last page.

Note that the MIPS design studied
in Computer Organization has fewer.

All instructions are four bytes and start on an
address which is a multiple of four:

No instruction can cross a page boundary.

At most one memory reference per instruction.

CS 422 · T W Bennet · Mississippi College 67

Locking Pages

If a an I/O operation is active, the page containing the I/O
buffer had best not be reallocated.

Read might complete into the new page. Ooops

Such frame must be pinned in memory until the I/O completes.

Not a problem if O/S restricts I/O to its own buffers.

CS 422 · T W Bennet · Mississippi College 68

Backing Store

Allocate a swap area on disk.

May create images of the virtual memory on the disk.
Must manage regions much like partitions in memory.

Each page table has a disk location,
with page table offset by its number.

May allocate page images on disk as needed.

Each page not in memory has it own random location on disk.

CS 422 · T W Bennet · Mississippi College 69

Backing Store

0

4

3

6

6

4
3

0

7

5

2
1

Pages

Page
table

Main memory Disk

Swap area

(a)

0

4

3

6

6

4
3

0

5

1

7

2

Pages

Page
table

Main memory Disk

Swap area

(b)

Disk
map

CS 422 · T W Bennet · Mississippi College 70

User-Level Paging

Disk
Main memory

External
pager

Fault
handler

User
process

MMU
handler

1. Page
 fault

6. Map
page in

 5. Here
is page

User
space

Kernel
space

2. Needed
page

4. Page
arrives

3. Request page

CS 422 · T W Bennet · Mississippi College 71

Segmentation

Addresses are two-part.
Segment number and offset.

Programmer (or compiler) is aware of segments.

A segment table gives the memory location of the segment.

Segments are of various sizes.

Each segment is something meaningful to the program.
A data structure, library, function, etc.

Permissions implemented at the segment level.
More meaningful than at the page level.CS 422 · T W Bennet · Mississippi College 72

Segmentation and Paging

Generally implemented with paging.
Otherwise, you have to manage segments in memory.

The segment table denotes a page table.

The page table maps the segment offset to a real page.

Segment number Page
number

Offset within
the page

18 6 10

Address within
the segment

CS 422 · T W Bennet · Mississippi College 73

Multics VM

Segment number Page
number

Offset

Descriptor
segment

Segment
number

Page
number

MULTICS virtual address

Page
table

Page

Word

Offset

Descriptor Page frame

CS 422 · T W Bennet · Mississippi College 74

Pentium Segmentation

Current segment is selected by CS, DS, SS, or
other segment register.

Register may be selected by an instruction prefix, or by
default based on the memory operation.

Segment register contains a 16-bit value with these fields.

Index

0 = GDT/1 = LDT Privilege level (0-3)

Bits 13 1 2

CS 422 · T W Bennet · Mississippi College 75

Descriptors

Descriptors denote a descriptor by index into one of two tables.

Global Descriptor Table
Local Descriptor table

Location and size denoted by the gdtr and ldtr control registers.

Index

0 = GDT/1 = LDT Privilege level (0-3)

Bits 13 1 2

CS 422 · T W Bennet · Mississippi College 76

Descriptors (Descriptor Table Entries)

Privilege level (0-3)

Relative
address

0

4

Base 0-15 Limit 0-15

Base 24-31 Base 16-23Limit
16-19G D 0 P DPL Type

0: Li is in bytes
1: Li is in pages

0: 16-Bit segment
1: 32-Bit segment

0: Segment is absent from memory
1: Segment is present in memory

Segment type and protection

S�� 0: System
1: Application

32 Bits

CS 422 · T W Bennet · Mississippi College 77

Mapping An Address

Descriptor

Base address

Limit

Other fields

32-Bit linear address

++

Selector Offset

CS 422 · T W Bennet · Mississippi College 78

More Mapping

(a)

(b)

Bits
Linear address

10 10 12

Dir Page Offset

Page directory

Directory entry
points to

page table

Page table
entry points

to word

Page frame

Word
selected

Dir

Page table

Page

1024
Entries

Offset

CS 422 · T W Bennet · Mississippi College 79

Protection Levels

Kernel

0

1

2

3

Level

Typical uses of
the levels

System calls

Shared libraries

User programs

CS 422 · T W Bennet · Mississippi College 80

Sources

Tanenbaum, Modern Operating Systems
(Course textbook.)

Understanding the Linux Kernel by Bovet and Cesati.
Contains a good discussion of Pentium segmentation.

CS 422 · T W Bennet · Mississippi College 81

