Block and Character Devices

Block devices have randomly-accessed blocks of data.

Character devices produce a sequential stream.

Not everything fits the categories well.

Bit-mapped displays

Huge Range of Speeds

Keyboard: A few bytes per second.

- 56K Modem: 7 KB/sec
- IDE Disk: 5 MB/sec
- Ethernet: 12.5 MB/sec
- SCSI 2 Disk: 80 MB/sec
- Gigabit Ethernet: 125 MB/sec
- PCI bus: 528 MB/sec

Devices and Controllers

Separate the mechanical parts from the electronics.

Electronics are the controller or adapter.

- CPU \rightarrow Adapter
- *Bytes, Op Codes, Interrupts, DMA*

Adapter \rightarrow Device

- *Bits, Synchronization, Checksums*
- Communication may be constant.
- *May use analog signals.*
Devices and Controllers

A controller may be able to handle several identical devices.

Controller-Device interface may be standard.

SCSI *IDE*

Talking to Devices

Devices have special registers which control them.

The CPU reads or writes these registers.

Send and receive data.

Query status.

Send addressing information

Set operating modes.

Addressing Devices

- Two address spaces
- One address space
- Two address spaces

Multiple Buses

Buses are optimized for their application.

PC's typically have three:

memory, PCI, ISA
Direct Memory Access

1. CPU programs the DMA controller
2. DMA requests transfer to memory
3. Data transferred
4. Ack

CPU
DMA controller
Disk controller
Buffer
Main memory
Bus

DMA

Data sent between I/O device and memory.

Data sent to DMA then to memory (or wherever).

Allows transfers between devices.

I/O Types

Direct

Interrupt-Driven

DMA

Interrupts

When an interrupt occurs, CPU transfers to a standard location.

Locations generally listed in an interrupt vector.

Controlled by CPU.

Each interrupt delivers a type code which indexes the vector.

Registers are saved on a stack.

Usually the kernel’s stack.

Pipelines, esp. multiple, complicate figuring out where you stopped.
I/O System Goals

Device Independence
Program for I/O, I’ll tell you what device later.

Uniform Naming
Devices names do not depend on the device.

Error Handling
Don’t pass errors up to caller if can be avoided.

Synchronous Asynchronous
Whether I/O requests block until completion.
Frequently both are provided.

Buffering
Collect data generated before delivery.

Interrupts

Device drivers do something that will cause an interrupt, then sleep.

The interrupt handler does the minimum, then awakens the sleeping driver.

Save regs, Mem context for service func,
Stack for service func, Ack interrupt,
Copy regs to proc descr., Run service func,
Choose process, Set context for process,
Load regs, Run new process

Layers

Like any complex software, the I/O system is built in layers.

Drivers

Takes enqueued abstract read and write requests and performs them against particular hardware.

Knows the details of the specific device.

Writes needed commands to the hardware registers.

If it needs to wait, it can suspend itself until the interrupt.

May have several requests outstanding;
Will have to figure out which one that interrupt is for.
Drivers, Cont.

Each device, or group of very similar devices, needs its own driver.

Usually have a standard interface to the rest of the O/S.

Useful to add new drivers.

Interface used only by O/S programmers. But maybe by other ones than wrote the OS.

Device-Independent Parts

Some driver software is device-independent.

- Uniform interfacing for device drivers
- Buffering
- Error reporting
- Allocating and releasing dedicated devices
- Providing a device-independent block size

Getting Drivers Into The OS

Traditional: Just compile or link the O/S.

Need to rebuild the O/S whenever you get new hardware.

Not very practical with PC’s. Often don’t have the source. Think of Aunt Maude compiling a kernel

Present drivers can be added dynamically to the O/S.

Buffering

For disks, buffer contents may be retained for reuse, or use by other processes.
Errors

Impossible request: Just report.

Device failure: Report, possibly halt O/S.

User Space

Some I/O processing is done in userland. *Usually libraries or programming languages.*

Formatting, base conversion.

Spooling.

I/O Layers, Again

<table>
<thead>
<tr>
<th>Layer</th>
<th>I/O request</th>
<th>I/O reply</th>
<th>I/O functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>User processes</td>
<td></td>
<td></td>
<td>Make I/O call; format I/O; spooling</td>
</tr>
<tr>
<td>Device-independent software</td>
<td></td>
<td></td>
<td>Naming, protection, blocking, buffering, allocation</td>
</tr>
<tr>
<td>Device drivers</td>
<td></td>
<td></td>
<td>Set up device registers; check status</td>
</tr>
<tr>
<td>Interrupt handlers</td>
<td></td>
<td></td>
<td>Wake up driver when I/O completed</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
<td></td>
<td>Perform I/O operation</td>
</tr>
</tbody>
</table>

Disks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBM 360-KB floppy disk</th>
<th>WD 18300 hard disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cylinders</td>
<td>40</td>
<td>10601</td>
</tr>
<tr>
<td>Tracks per cylinder</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Sectors per track</td>
<td>9</td>
<td>281 (avg)</td>
</tr>
<tr>
<td>Sectors per disk</td>
<td>720</td>
<td>35742000</td>
</tr>
<tr>
<td>Bytes per sector</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Disk capacity</td>
<td>360 KB</td>
<td>18.3 GB</td>
</tr>
<tr>
<td>Seek time (adjacent cylinders)</td>
<td>6 msec</td>
<td>0.8 msec</td>
</tr>
<tr>
<td>Seek time (average case)</td>
<td>77 msec</td>
<td>6.9 msec</td>
</tr>
<tr>
<td>Rotation time</td>
<td>200 msec</td>
<td>8.33 msec</td>
</tr>
<tr>
<td>Motor stop/start time</td>
<td>250 msec</td>
<td>20 sec</td>
</tr>
<tr>
<td>Time to transfer 1 sector</td>
<td>22 msec</td>
<td>17 µsec</td>
</tr>
</tbody>
</table>
Sectors

RAID

4: Striping with parity

5: Distributed parity

RAID

0: Striping

1: Copying

RAID

2: Bit splits with Hamming code

3: Bit splits with parity
CD ROM Mechanics

Compact Disks designed for recording music.
1980 - Red Book
Philips/Sony

Bits are indicated with pits in the surface.
Lack of a pit is a land.
Read by a laser.

Disk rotation rate must vary with head location to produce a fixed data rate.
Constant linear velocity

Hard disks use constant angular velocity, 3600 or 7200 rpm.

CD-ROMs vary from 530 rpm to 200 rpm.

CD ROM Formats

1984 - Yellow Book

- Symbols of 14 bits each
- 42 Symbols make 1 frame
- Frames of 588 bits, each containing 24 data bytes

Each byte is coded in 14 bits with extensive error correction in hardware.

Mode 2: For audio and video, use ECC space for data.

Single speed: 75 sectors/sec = 153,600 bytes/sec
File System

ISO 9660

Level 1: DOS Names
Directories to 8 levels
Contiguous files

Level 2: 32 characters.
Level 3: Not contiguous.

Rock Ridge: Unix extensions.

Recording CDs

1989 - Orange Book
CD-ROM XA: Incremental CD Writing

Before: Single VTOC
Orange: Each track has a VTOC
Use the most recent VTOC

Appear to delete by leaving things off a new track VTOC
Multisession CDs.
Each track must be written at one time.

Recordable CDs

Dye layer can be changed between two states.

High power marks the dye.
Medium power erases it.
Low power reads it.

Writing: Set laser power high, darkens the dye layer.
Reading: low power.
DVDs

Similar to CD’s.
Higher-frequency laser allows closer packing.

- Smaller pits: 0.4 microns v. 0.8
- Tighter spiral: 0.74 microns v. 1.6
- Red laser 0.65 microns v. 0.78

Double-layer format: stack two single layers.
Laser focused differently for each layer.

Double-sided formats also.
Turn ’em over.

Low-Level Formatting

New disk is a stack of round plates coated with magnetic material.

Low-level formatting fills each track with sectors.
Small separation between.

Usually done by manufacturer.

Low-level format may consume 20% of hardware capacity.

Hard Disk Formatting

Low-level formatting.
Mark out and number the sectors.

Partitioning
Divide into virtual disks via a partition table.

High-level formatting.
Create an empty filesystem.

Sector Format

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Data</th>
<th>ECC</th>
</tr>
</thead>
</table>

Preamble contains a recognizable pattern, along with a sector number and control info.
Cylinder Skew

Allow a delay for head motion when reading sectors in order.

Interleaving

(a) 07341265
(b) 07524136
(c) 05143627

Allows newly-read sector to be copied out without having to go around again.

Partitioning

Reserve a sector as the Master Boot Record (MBR)
Usually zero.

Loaded and run when the system boots.

Rest is divided into partitions.
Virtual disks.

Partition table records this division.
PC partition tables have room for four partitions.
Also extended partitions partition a partition.

High-Level Format

Fill the boot block.
Free block list.
Root directory.
Disk Times

Seek: Find the track.
Rotational delay: Wait for the sector.
Transfer time.
Seek time generally dominates.

Disks requests need not be filled in order. Usually optimized to reduce seek time.

Disk Scheduling Algorithms

First-Come First Served (FCFS).

Shortest Seek-Time First (SSTF).
Always move to nearest request.

Elevator.
Keep going in the current direction.
Also called SCAN.

One-Way Elevator
Process requests while going only one way.
Also C-SCAN.
Elevator Is Unfair

A random request in the middle of the disk must wait at most the scan width for service.

Average half the width.

A random request in the edge of the disk must wait at most twice the scan width for service.

Average one width.

The one-way elevator eliminates this discrepancy.

Costs

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCFS</td>
<td>6844</td>
</tr>
<tr>
<td>SSTF</td>
<td>1084</td>
</tr>
<tr>
<td>Elevator</td>
<td>1172</td>
</tr>
</tbody>
</table>

Why is Elevator preferred: Behavior under heavy loads.
Disk Errors

Disks are manufactured with increasing data density.

Impossible to manufacture a flawless disk.
Some sectors will not correctly return data stored on them.

Bad sectors are detectable by failure of the ECC check after read.

Low-level formatting omits non-functional sectors.
Reserves spares for later failures.

Seek Errors

If the head is not where it should be after a seek, must be recalibrated.
Head is no longer where the controller thinks it is.

Recalibration moves the head all the way to the edge.
Now the controller knows where it is.

Hard drives usually done by the controller.
Floppies done by the O/S.

Sources

Tanenbaum, *Modern Operating Systems* (Course textbook.)