A THREAD IMPLEMENTATION PROJECT SUPPORTING AN OPERATING SYSTEMS
COURSE

Tom Bennet

Department of Computer Science
Mississippi College

Clinton, MS 39058
601-924-6622

bennet@mc.edu

ABSTRACT

This paper describes an assignment for an operating systems course in which students
implement a simple threading support library. This project provides practical experience with
scheduling and dispatch using a single, discrete project, without the complexity of writing or modifying
a full OS scheduler. Students can solve this problem entirely in C or C++, so they do not need
assembler language. We describe a version of such an assignment used at Mississippi College, and
some possible variations.

INTRODUCTION

A course in operating systems is a standard part of the Computer Science curriculum [8]. A
major purpose of any OS, and hence a major topic of any OS course, is the management and scheduling
of processes [9]. While scheduler design will certainly be discussed in lecture, a project can be very
helpful to reinforce the concepts. Some courses concentrate on the actual implementation of a small
OS [11], which will include thorough study of its scheduler. A student project OS must run on a
dedicated machine, real or virtual, with consequent complexities of running and debugging. It must
either be part of a project to write the entire OS, or students will need to understand the balance well
enough to operate on a vital component without killing the patient.

Not all instructors wish or need to pursue so lengthy and involved an exercise. This paper
describes a less-extensive alternative: creation of a user-level threading library. Such a library is used
by a program running in a traditional process. The operating system provides a single thread for this
process, which the threading library multiplexes to support a threaded application. It exports
primitives for thread creation, and for threads to exit or to terminate each other. Usually, there are
synchronization primitives which allow threads to wait on one other and to communicate. An example
of a full-scale threading interface, much more complex than our exercise, is the standard pthreads [1].

While threads are less complex than processes, a thread library has many duties in common
with an OS: threads must be created, scheduled, dispatched and synchronized. Yet the library is used
and tested in an ordinary process. Our simple thread library can be completed in a matter of a few
weeks, and can be used to write non-trivial threaded programs.

SUPPORT LIBRARY

Students are provided with a small support library to manipulate CPU registers [2]. This allows
them to solve the threading problem without using assembler language. The present version of the
register library is written for the PC architecture using the NASM assembler [6]. This version runs on
Linux. A port to Windows should be straightforward; porting to other hardware architectures may be
possible as well. The register library is designed to be minimal and general. It exports the type name
regbuf_t and just four operations.



Registers are saved and restored with the regsave and regrest operations, called like this:

int regsave (regbuf_t buffer);
int regrest (regbuf_t buffer, int retval);

The regsave operation copies the program-visible CPU registers into a memory region provided by
the programmer, and regrest copies them back. They are very similar to the set jmp and
longjmp operations which are part of standard C [4], and could probably be used just as well. Since
the program counter is among the registers saved and restored, the regrest operation does not return;
instead, the regsave call which saved the state being restored returns again. Generally, regsave
returns once after it is called, then again each time regrest is called with the same save buffer.

When regsave does return, it is often necessary to distinguish between its initial return and a
return caused by regrest. To accomplish this, regsave returns 0 in the first case, and otherwise in
the second. The second parameter to regrest becomes the return value of the revitalized regsave.
Most regsave calls will be either in an if test, or immediately followed by an if, to provide different
behavior in those cases.

The restack operation relocates the stack into alternate space specified by the caller. It takes
four arguments, like this:

int restack(void *newstack, int size, int nframe, int nparm);

This call accepts a block of space from the caller, and makes this the stack area of the current thread. It
does this by copying a portion of the caller's original stack into the specified area, then directing the
CPU stack pointer there. When restack returns, the calling thread is using the substitute stack.
Restack copies nframe frames of the original stack, plus nparm additional integer-sized chunks.
The latter accounts for parameters to the topmost copied frame.

Since restack does not copy the entire call stack, it is quite possible to return from the
topmost copied frame, which is invalid. To deal with this, restack changes the return address of that
last frame to cause a transfer to an error handler. The default error handler prints a message and
terminates the program; set cleanup allows the client to specify an alternate cleanup function, like
SO:

cleanvec_t setcleanup(cleanvec_t cleanfunc);

This call sets the new handler, and returns the old one.

BUILDING ON THE FOUNDATION

Threading libraries with various interfaces may be built using the above register primitives.
Here, we present the interface used for a assignment in the Operating Systems course at Mississippi
College during Fall 2006. As will be apparent, the interface was modeled after some of the Unix
process creation primitives [7].

Any reasonable solution must create a record for each thread, and manage collections of them.
In the following, these are called Thread Control Blocks, or TCBs. Students must create TCBs for new
threads, and manage a ready list for dispatching. Since one thread can wait for another to terminate,
students must also manage a collection of blocked threads, and activate them when their awaited event
occurs. We schedule threads using simple, non-preemptive first-come-first served, but other algorithms
could be used just as well.

The remainder of this section summarizes our thread interface, sketches a possible
implementation, and describes some alternatives. The function bodies here look somewhat C-like, but
are very much pseudocode.



Initialization

The thread library must be initialized by a call to th_init. The client must do this before
using any of the other facilities. Its primary job is to record the pre-existing thread so it may be
scheduled, something like this:

th_init():
... initialize data structures ...
current := new TCB;

A traditional process, as created by the operating system, has a single thread. The th_init function
creates a TCB to represent it, and places it into the global variable current, which always points to
the currently active thread. Some implementations will also add it to a collection, either a ready list or
a list of all TCBs.

Thread Creation

Threads are created with th_fork. Like the Unix process-creation operation fork, th_fork
returns twice, in the parent thread which called it, and again in the child thread which it creates.

Th_ fork returns the identifier of the new thread in the first case, and the symbol ARE_CHILD in the
second. The function may be implemented along these lines:
th fork () :

t := new TCB;

ready.insert (t);

if (regsave (tmpbuf) > 0) return t->identifier;

restack (t—>space, ...);

if (regsave (t->registers) > 0) return ARE_CHILD;

regrest (tmpbuf, 1) ;

The procedure creates a new TCB and inserts it into the ready list, then saves the registers for
later. It fills in the new TCB by switching to stack space within the TCB, and saving the registers in the
TCB also. The final regrest wraps up as follows:

e Restoring the registers restores the stack pointer, switching the thread back to original stack.

o The restore also transfers control to the first regsave, which returns 1.

e The if is satisfied, so th_ fork finishes and returns the new thread identifier.
Notice how control jumps around. Each regsave returns twice, the second return causing immediate
return from th_fork. For the first regsave, this return follows the concluding regrest,
completing the initial th_fork call. The second regrest makes its second return later. When the
newly-created thread is first dispatched, its TCB is removed from the ready list, and a regrest is
executed on its register area, which brings control back here for the second return of th_fork.

Thread Dispatch
Since our thread scheduling is non-preemptive, threads must volunteer to surrender the CPU.
They do this by calling th_yield (), which chooses another thread and dispatches it. An
implementation might look like this:
th_yield():
if (regsave (current—->registers) > 0) return;
ready.insert (current) ;
current := ready.next();
regrest (current->registers, 1) ;

This suspends the current thread by saving its registers in its TCB, then placing it onto the ready list.



The function then chooses another thread to run, places it in current, and dispatches it by restoring its
registers to the CPU. Notice that the regrest may return at the regsave in this function, or in
another, depending on its history. If this is the first time the new thread has been run, the return will be
from the second regsave in th_fork, which will then return to its newly-created thread.

The ready.next () call in the above encapsulates the selection of which ready thread to
dispatch. Our classroom project used simple first-come, first-served scheduling, so ready .next ()
was simply removing the head of a queue. Any desired policy could be implemented.

Termination and Synchronization

A thread may terminate itself with th_exit (n), or it may terminate another with
th_kill(id, n). Ineither case, the terminated thread is given the exit value specified by n, and
that value can be recovered by th_wait (id). The th_wait (id) call suspends the calling thread
until the thread denoted by id terminates, then returns its exit value.

These synchronization operations require the students to manage a list of blocked (waiting)
threads, and transfer exit values. A thread may terminate before or after another waits for it, so the code
must handle both cases. If termination occurs first, the exit value must be retained until a wait occurs.
Otherwise, the waiting thread must be suspended, and the exit value transferred when the awaited
thread expires.

The Required Solution

Students were required to submit source code for a complete library in either plain C or C++, at
the student's option. So each solution must contain a header file to define the interface, and an
implementation file to provide the function bodies. Regardless of implementation language, the
interface is plain-C style, with each operation a top-level function, rather than a class method. The
functions are those described above: th_init, th_fork, th_yield, th_exit,th_kill and
th_wait, along with utilities th_me () and th_stksize (s). The former returns the identifier of
the thread which calls it, and the later sets the size of thread stacks.

The interface file was also required to export a type name, th_id_t, which is the type of a
thread identifier. It is the return type of th_fork, and the type of the id parameter sentto th_wait
and th_kill. Accompanying these must be the symbolic constants ARE_CHILD and
DEF_STACK_SIZE. The firstis of type th_id_t, and is essentially a null thread identifier. The
later is an integer giving the default size used for stacks when th_stksize has not set a value. The
full specification is available from [2].

Students have access to a shared Linux system where the register utility is installed as a shared
library. The submitted thread library must compile on this system. Any correctly-formed threaded
client must also compile. Then the whole thing must successfully link, along with the register library,
and run correctly.

Test Drivers

The students were given several example clients which show ways the threading interface can be
used. Most of these are just test drivers, designed to exercise the library rather than attempt any
meaningful calculation. The exception was a program which finds the shortest path in a graph. It reads
a weighted graph followed by several node pairs, and finds the shortest acyclic path between each pair.
The program executes a breadth-first search. When any node has multiple un-visited neighbors, the
search thread visits one neighbor itself, and creates additional threads to visit each of the others.
Copies of these programs are posted on line [2].



Alternative Interfaces
Since this interface is modeled after Unix process creation, it differs somewhat from most
standard threading facilities. But such interfaces could be imitated instead. For instance, a thread
creation primitive modeled after the pthreads interface [1] might use a creation primitive like the one
below. It takes a function, along with an argument to send it, and runs these in the newly-created
thread. It returns the id of the new thread to the caller through a parameter.
th_create(id, func, argqg):

t := new TCB;

ready.insert (t);

id = t-—>identifier;

if (regsave (current->registers) > 0) return;

restack (t—>space, ...);
if (regsave (t—->registers) > 0) {
func (arg) ;
delete current; // t == current

current := ready.next();
regrest (current—->registers, 1) ;

}

regrest (current->registers, 1);
The implementation of th_create is similar to th_fork. The main difference is that we must call
the thread function in the new thread, then dispatch another thread when it finishes.

A Java-like interface [3] could also be created. It would consist of a class Thread containing an
abstract method run () and a method start (). The client provides the code run in the thread by
implementing run (), and starts the thread running it by calling start (). The start method could
be implemented much like the th_create above, but would call the run method rather than a
functional parameter. Any additional thread operations would be methods of the class. Structures such
as the ready queue, which apply to all threads, would be static members.

So several threading interfaces might be built atop the register primitives. The implementations
are similar, and require the creation an management of TCBs, along with blocking, unblocking and
dispatching threads.

(JUST A LITTLE) EXPERIENCE

The author assigned the Unix-like threading problem described above in Fall 2006. (A
somewhat different version was used the previous year.) Students had a month to solve it, including a
one-week extension. Most students managed to create and dispatch threads, though some solutions
worked only partially. Six used plain C and eleven used C++.

Most solutions contained three thread lists chosen from four possibilities: all threads, ready
threads, terminated threads or waiting threads. Some used just two of those, and one had separate lists
for exited and killed threads. The C++ solutions used STL container classes from the C++ libraries [5]
for these lists, variously the list, queue, and map template classes. The C solutions generally used
arrays of TCBs or of TCB pointers. Several declared fields to link TCBs into lists, but only one
avoided arrays entirely. The use of efficient data structures was not emphasized, and the C solutions
generally reflected this, frequently using linear search.

Because threads wait for others to terminate, the issues of termination and synchronization are



mixed. From conversation with students, this seemed to be a particular problem. In the future, it may
be better to separate these issues by eliminating the existing thread wait call, and introducing a mailbox
object [10]. Threads would use a mailbox to transmit a single integer value. Executing a receive on an
empty mailbox suspends the caller until data is available. Implementing mailboxes would still provide
experience managing blocked threads, separately from termination, while actually providing a slightly
more flexible synchronization facility.

CONCLUSION

This paper outlines the definition and solution of an exercise to create a threading library. This
exercise supports the standard Operating Systems course as simpler alternative to writing or modifying
a full OS. Students get experience in creating, managing, dispatching and synchronizing threads. They
must manipulate the threads as an OS does, from the outside, without being part of any of them. Yet
this is a single project which can be solved in a few weeks. It produces usable code which can be
compiled, linked, tested and used on a conventional OS.

[1] Barney, B., POSIX Threads Programming, http://www.lInl.gov/computing/tutorials/pthreads/, last
modified Aug 16, 2006.

[2] Bennet, T, The Tswitch Thread Support Library, http://sandbox.mc.edu/~bennet/thproj.html, last
modified Dec 26, 2006.

[3] Class Thread, http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html, copyright 2004.

[4] Harbison, S., Steele, G., C: A Reference Manual, Upper Saddle River, NJ: Prentice Hall, 2002.
[5] Josuttis, N. M., The C++ Standard Library, Reading, MS: Addison-Wesley, 1999.
[6] NASM Home page, http://nasm.sourceforge.net/doc/html/nasmdoc0.html, retrieved Dec 2, 2006.

[7] Quarterman, J., Silberschatz, A., Peterson, J.,. 4.2BSD and 4.3BSD as examples of the UNIX
system. ACM Comput. Surv. 17, (4), 379-418. 1985.

[8] Sharma, O., Enhancing operating system course using a comprehensive project: decades of
experience outlined, Journal of Computing Sciences in Colleges, 22, (3), 206 - 213, 2007.

[9] Silberschatz, A., Galvin, P., Gagne, G., Operating System Concepts, Hoboken, NJ: John Wiley &
Sons, 2005.

[10] Stallings, W., Operating Systems: Internals and Design Principles, Upper Saddle River, NJ:
Prentice Hall, 2005.

[11] Tanenbaum, A., Woodhull, A., Operating Systems: Design and Implementation, Upper Saddle
River, NJ: Prentice Hall, 2006.


http://www.llnl.gov/computing/tutorials/pthreads/
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html
http://sandbox.mc.edu/~bennet/tswitch.html

