
CSC 216
Data Structures

Dr. Melissa Wiggins
MCC 306

(601) 925-3874
http://www.mc.edu/~mwiggins

mwiggins@mc.edu

COURSE CREDIT: 4 hrs. credit PREREQUISITES: CSC 116, with a C or better

OFFICE HOURS: MWF 9-10, TR 8-9, TW 1-3, F 11-12, other hours by appointment

TEXT: Java Software Structures, John Lewis & Joseph Chase
Course web site: http://cosmo.mc.edu/moodle - Computer Science - CSC216MW

OTHER MATERIALS: You MUST have a MCnet (Novell and GroupWise) account for this course for
email and the ability to use the laboratory computers. You MUST check this
email account (MCnet) every day. Failure to do so may result in missed
assignments, etc. that may result in a lower grade in this course. A USB storage
device is necessary for this course.

DESCRIPTION: Three hours of lecture and three hours of laboratory per week. An introduction to the
basic concepts of data structures from a practical standpoint with an emphasis on the use
of some of the abstractions necessary for structured program development. Topics
include, software development tools, top-down design, algorithm analysis, encapsulation,
and methods of implementation as well as the common data structures stacks, queues,
lists, and trees. Sorting and searching techniques employing these data structures will
also be examined.

RATIONALE: This course is required of all majors and minors in Computer Science and Computing
and Information Systems as well as various other degree programs on campus.

LEARNING OBJECTIVES: After successfully passing this course, the student will be able to write well-
designed object-oriented programs in the Java language that use and implement
the common data structures and their extensions. The entire list of course
objectives can be found at
http://www.mc.edu/campus/users/mwiggins/csc216.pdf.

EVALUATION:

Exams: There will be a three exams worth 150 points. (450 points)
Assignments: There will be 5-8 programming/problem solving assignments worth a total of 150 points.
Lab Assigns: There will be a 12 laboratory assignments worth a total of 200 points. This grade will

come from the quizzes that are given at the end of lab each week.
Final Exam: There will be a comprehensive final examination given at the time specified by the

college. Friday, December 7, 2007, 11:00a.m.-1:00p.m. This examination will be worth
200 points.

Grading Scale: 895 - 1000 points A 595 - 694 points D
795 - 894 points B 0 - 594 points F
695 - 794 points C

CLASS ATTENDANCE: The student is expected to attend classes. Regulations for class attendance are given
in the Class Schedule. Remember in a MWF class 12 absences is an automatic F. Three tardies counts as one
absence in this class. (See Mississippi College catalog). Laboratory attendance is very important!! Four

absences in lab will result in a grade of 0 for the lab portion. “For lesser numbers of absences, the student should
expect a lowered grade in the course, with the maximum penalty of one letter grade for each week of absences (in
a semester) or the equivalent. The calculation of the semester grade, including any penalty for absences, is the
responsibility of the professor and may vary according to the nature of the course and the grading scale used. In
some classes points will be deducted from the semester grade for unexcused absences; in others, the penalty may
be built into the grading scale by means of frequent pop quizzes, grades for class participation and the like.”
Mississippi College Policy 2.10 Students should expect a penalty for absences as stated above.

MAKE-UP WORK & TESTS: Students are expected to take tests on the day they are assigned. However, it is
the student's responsibility to contact the instructor in case of an emergency illness or death in the family before
the test. At that time the student and instructor will agree on a time for the make-up exam. This time should be
within 2 days of the missed test. Assignments are to be turned in on the day they are due!! All work is due at
the beginning of the class period. Any work not turned in will lose 10% credit for each school day until the third
day. The due date at the beginning of class is day 1. No work will be accepted after the third day. Under no
circumstances will work be accepted after the assignment has been graded and handed back in class. Laboratory
work will be due at the end of each week’s lab at which time a lab quiz will be administered. Exceptions to this
may be made at the instructor’s discretion.

ACADEMIC INTEGRITY: This statement on academic honesty in computer science courses is an addendum
to the Mississippi College Policy 2.19. In a computer science class individual effort is expected. Student
misconduct not only includes cheating on tests, but also extends to copying or collaborating on programming
assignments, projects, lab work or research unless otherwise specified by the instructor. Using other people's
accounts to do your work or having others do your work is prohibited. Close proximity in lab does not mean
collaboration is permitted. NOTE: Discussing logical solutions to problems is acceptable, exchange of code,
pseudocode, designs, or procuring solutions from the Web, other texts, the Internet or other resources on or off
campus is not acceptable and will be treated as cheating. REMEMBER: Any work submitted by the student
which is not the student’s own will be considered cheating.
First offense: grade of 0 for **all** parties involved unless the "guilty" party can be determined as well as
any punishment deemed necessary under policy 2.19
Second offense: grade of F in the course as well as any punishment deemed necessary under policy 2.19

SPECIAL ACCOMMODATIONS: If you need special accommodations due to learning, physical,
psychological, or other disabilities please contact Dr. Buddy Wagner in the Counseling and Career Development
Center. He may be reached by phone at (601)925-3354 or by mail at P.O. Box 4013, Clinton, MS 39058.

DROPPING A COURSE: LAST DROP DATE - October 26
Students cannot withdraw after this date with a W (passing) unless the three following criteria are met:

 - Extenuating circumstances (clearly outside the student’s control)
- Passing the course at the time of withdrawal
- Does not have excessive absences at the time of withdrawal
NOTE: Dropping after the THIRD (3rd) WEEK will result in a grade of W appearing on your
permanent record (transcripts). See http://www.mc.edu/publications/policies/2.13.doc.

INCOMPLETE GRADES: An Incomplete may be given to a student who has been providentially hindered
from completing work required in a course, provided that:
1. semester attendance requirements have been met;
2. most of the required work has been done;
3. the student is doing passing work; and
4. the student has made prior arrangements with the professor to complete the remaining work at a later date.
The grade of I must be removed promptly or it becomes an F; it cannot be removed by repeating the course.

TENTATIVE COURSE OUTLINE*

Day Date Course Topic & Reading Assignment Other Course Assignments

1 Aug 22 Course Policies - Intro. to Course & Review

2 24 Ch. 1 - Software Engineering

3 27 Ch. 1

4 29 Ch. 2 - Object-Oriented Design

5 31 Ch. 2

6 Sept 3 No Class Labor Day Holiday

7 5 Ch. 2

8 7 Ch. 3 - Collections

9 10 Ch. 3

10 12 Ch. 4 - Linked Structures

11 14 Ch. 4

12 17 Ch.6 - Stacks

13 19 Ch. 6

14 21 Ch. 6

15 24 Exam 1 - Chapters 1-5

16 26 Ch. 7 - Queues

17 28 Ch. 7

18 Oct 1 Ch. 7

19 3 Ch. 8 - Lists

20 5 Ch. 8

21 8 No Class Fall Recess

22 10 Ch. 8

23 12 Ch. 10 - Recursion

24 15 Ch. 10

25 17 Exam 2 - Chapters 6-9

26 19 Ch. 11 - Searching & Sorting

27 22 Ch. 11

28 24 Ch. 11

29 26 Ch. 12 - Trees **Last Drop Date

30 29 Ch. 12

31 31 Ch. 13 - Binary Search Trees

32 Nov 2 Ch. 13

33 5 Ch. 13

34 7 Ch. 15 - Heaps

35 9 Ch. 15

36 12 Ch. 15 / Ch. 17 - Hashing

37 14 Ch. 17

38 16 Ch. 17

39 19 Ch. 16 - Multi-Way Search Trees

40 21 No Class Thanksgiving Recess

41 23 No Class Thanksgiving Recess

42 26 Ch. 16

43 28 Exam 3 - Chapters 10-15, 17

44 30 Ch. 18 - Graphs

45 Dec 3 Ch. 18 Dead Days

46 5 Wrap-Up & Review Dead Days

47 7 Comprehensive Final Examination 11:00 a.m.-1:00 p.m.

*Instructor reserves the right to modify as necessary.

Program Submission Guidelines

All programs must be submitted by em ail as an attachm ent. Source code must be submitted as well as all files necessary

for the programs execution. The email message should contain the following information:

!Author’s name

!Date completed

!Brief problem description

!Statement regarding whether the program works or not.

!If the program does not work, a brief but concise description of what is wrong and what it will take to “fix” it.

CSC 216 LABORATORY SCHEDULE

LAB # WEEK OF LAB CONTENT

1 Aug 27 Chapter 1 - Software Engineering

2 Sept 3 No Lab - Labor Day

3 Sept 10 Chapter 2 - Object-Oriented Design

4 Sept 17 Chapter 3 - Collections

5 Sept 24 Chapter 4 - Linked Structures

6 Oct 1 Chapter 6 - Stacks

7 Oct 8 No Lab - Fall Break

8 Oct 15 Chapter 7 - Queues

9 Oct 22 Chapter 8 - Lists

10 Oct 29 Chapter 10 - Recursion

11 Nov 5 Chapter 11 - Searching & Sorting

12 Nov 12 Chapter 12 - Trees

13 Nov 19 Chapter 13 - Binary Search Trees

14 Nov 26 Chapter 15 - Heaps

LEARNING OBJECTIVES: After successfully passing this course, the student will be able to write well-designed

object-oriented programs in the Java language that use and implement the com mon data

structures and their extensions.

A. The Language of Efficiency

The student will be able to

1. Know why data g iving raw measurements of algorithm performance cannot be used to compare

algorithms.

2. Understand how equations describing the resource consumption patterns of algorithms stay in the same

family, even though computers, compilers, and languages may vary.

3. See how the dominant term of the running time equation accounts for most of an algorithm’s running time

for large problem sizes.

4. Develop intuition for the meaning of O-notation by exploring patterns in the same data.

5. Understand how O-notation is used by computer scientists to refer to the performance properties of

algorithms.

6. Understand the formal definition of O-notation.

7. Use some useful shortcuts for manipulating O-notation.

8. Understand about circumstances in which O-notation analysis does not apply.

9. Know what to do to find optimal algorithm s under these circumstances.

B. Software Engineering Concepts

The student will be able to

1. Design programs using object-oriented design (OOD).

2. Understand the difference between top-down design and bottom-up programming.

3. Understand the process of stepwise refinement.

4. Examine how to refine choices of data structures and a lgorithms in para llel.

5. Understand unit, integration, regression, and acceptance testing.

6. Use test drivers and stubs.

7. Understand the separate roles of testing and verification.

8. Understand the difference between top-down and bottom-up testing.

9. Appreciate the value of formatted debugging aids.

10. Understand what a test plan is and write test plans.

11. Use concepts of good program structuring.

12. Discuss some ideas that help produce good documentation.

C. Introduction to Object-Oriented Programming

The student will be able to

1. Define a subclass by extending a given class.

2. Override applet and interface methods to create a customized new drawing applet.

3. Develop programs starting with reusable software components.

4. Use abstract classes and abstract methods.

5. Understand inheritance and overriding in class hierarch ies.

6. Use type polymorphism to advantage.

7. Draw into off-screen image to eliminate flashing.

8. Understand the flavor of OOP that relies on heavy use of prefabricated software components.

9. Understand the role of standard applet method invocations.

D. Linked Data Representations

The student will be able to

1. Understand what pointers are and how they can be used.

2. Appreciate the importance of pointers in real-world systems.

3. Understand how Java’s reference va lues can represent pointers and links.

4. Know how to allocate object memory dynamically and obtain references to it.

5. Manipulate reference va lues in Java to create linked data representations.

6. Understand how to interpret the pointer diagrams used in this book.

7. Use a notation for picturing linked representations that is helpful when reasoning about them.

8. Understand how to represent and manipulate linked lists using Java objects and reference values.

9. Develop skill in designing and implementing linked list algorithms.

10. Understand and use a set of useful basic linked list operation.

11. Understand some possibilities for linked data representations other than simple, one-way linked lists.

12. Illustrate how nodes with two links can be linked into representations such as two-way linked lists, circular

lists, and trees.

E. Recursion

The student will be able to

1. Think recursively.

2. Understand how strategies for recursion involve both base cases and recursion cases.

3. Search for different ways of decomposing a problem into subproblems.

4. Understand how to use call trees and traces to reason about how recursive programs work.

5. Understand infinite recursion.

6. Understand the symptoms caused by the occurrence of infinite recursion.

7. Understand that some recursive algorithms have exponential running times.

8. Understand why it is impractical to use exponential algorithms to solve problems of large size.

F. Modularity and Data Abstraction

The student will be able to

1. Identify an abstract data type (ADT) from an example.

2. Understand how it is possible to replace the underlying representation for an abstract data type without

changing the operations it presents to its external users through its interface.

3. Use information hiding features of Java to hide the implementation details of an abstract data type’s

operations.

4. Change underlying data representations implementing an ADT without changing any of the code that uses

the ADT.

5. Use Java interfaces to make plug-compatible replacement (Strings for integers, etc.) work.

6. Understand the role of Java interfaces and classes in implementing modular software.

7. Understand the general benefits of modularity and information hiding in the design of large software

systems.

8. Understand the philosophy and terminology in general use concerning modularity and information hiding.

G. Linear Data Structures - Stacks and Queues

The students will be able to

1. Understand and use the common terminology of stacks and queues.

2. Understand how stacks can be used in dealing with recursion and in other applications.

3. Understand the view of ADTs as data structures + operations.

4. Understand about the abstract operations and interfaces for stack and queue ADTs.

5. Understand how stacks can be used to evaluate postfix expressions.

6. Understand how to implement stacks in two different but substitutable ways.

7. Understand how to separate implementation details form abstract operations in an ADT interface.

8. Understand features of sequential and linked representations.

9. Understand how queues can be used in simulations and modeling.

10. Understand how to implement queues in two different but substitutable ways.

11. Understand about print buffers and print spoolers and synchronization problem s.

H. Lists, Strings, and Dynamic Memory

The student will be able to

1. Understand the advantages and disadvantages of sequential and lined representations of lists.

2. Understand one-way, two-way, and circular linked list representations.

3. Understand the role of list header nodes.

4. Understand that many varieties of list representations are possible.

5. Understand how genera lized lists differ from simple linear lists.

6. Understand how to represent and manipulate generalized lists.

7. Understand the difference between shared and copied sublists.

8. Understand how the Java String and StringBuffer classes are used to manipulate a string’s characters.

9. Understand the difference between static and dynamic memory allocation.

10. Understand about available space lists and garbage collection.

11. Understand how heaps can be used to support dynamic memory allocation.

12. Understand fragmentation, coalescing, handles, and heap compaction.

I. Trees

The students will be able to

1. Understand the terminology of trees and the relationships among nodes in a tree.

2. Understand the definition of binary trees, extended binary trees, and complete binary trees.

3. Understand how to represent a heap using a contiguous sequential representation.

4. Understand how heaps cam serve as efficient representations for priority queues.

5. Understand and be apply to apply the four types of traversal orders com monly app lied to nodes of binary

trees.

6. Understand how stacks and queues can be used to perform nonrecursive traversals of linked binary tree

representations.

7. Understand how to search for a key in a binary search tree.

8. Understand what shapes binary search trees must take to yield the best and worst search performance.

9. Understand how binary search trees perform in the average case.

J. Hashing & Searching

The student will be able to

1. Understand intuitively hashing concepts using simple examples.

2. Be familiar with hash functions, collisions, collision resolution policies, open addressing, probe sequences,

chaining, and buckets.

3. Understand the performance of hash algorithms.

4. Understand how the algorithms for hashing with open addressing work.

5. Understand the performance formulas characterizing how well hashing works.

6. Understand how to design a good hash function.

7. Trace the execution of a serial and binary searches.

K. Sorting

The student will be able to

1. Understanding how comparison trees are defined.

2. Understand how abstract priority queue sorting.

3. Understand how SelectionSort and HeapSort work.

4. Know the O-notation for the sorting times for SelectionSort and HeapSort.

5. Understand the divide-and-conquer theme, as applied to sorting methods.

6. Understand that MergeSort is an O(n log n) sorting method.

7. Understand how QuickSort works and that it runs in average time O(n log n) and worst case time O(n2).

8. Understand how the InsertionSort and InterchangeSort work and what their efficiencies are.

9. Know about the O(n) RadixSort.

10. Understand how the ShellSort and BubbleSort work and why the BubbleSort should be avoided in general.

11. Measure the performance of several of the sorting methods and be able to know when and when not to use

various sorting methods.

